
VECTOR SPACES

BRANKO ĆURGUS

In these notes we denote C denotes the set of all complex numbers, R
denotes the set of all real numbers, Z denotes the set of all integers and N
denotes the set of all positive integers.

1. Axioms

Definition 1.1. In these notes F stands for either R or C. Since both R or
C are fields, we will sometimes refer to F as a field of scalars. ♢

Definition 1.2. Let V be a nonempty set. The set V is called a vector
space over F if the following ten axioms are satisfied.

AE. There exists a function + : V × V → V , called addition in V . Its
value at a pair (u, v) ∈ V × V is denoted by u+ v.

AA. For all u, v, w ∈ V we have u+ (v + w) = (u+ v) + w.
AC. For all u, v ∈ V we have u+ v = v + u.
AZ. There exists an element 0V ∈ V such that v+0V = v for all v ∈ V .
AO. For each v ∈ V there exists w ∈ V such that v + w = 0V .

SE. There exists a function · : F×V → V , called scaling in V . Its value
at a pair (α, v) ∈ F× V is denoted by α · v, or simply αv.

SA. For all α, β ∈ F and all v ∈ V we have α(βv) = (αβ)v.
SD. For all α ∈ F and all u, v ∈ V we have α(u+ v) = αu+ αv.
SD. For all α, β ∈ F and all v ∈ V we have (α+ β)v = αv + βv.
SO. For all v ∈ V we have 1v = v.

♢

2. Basic propositions

A few immediate consequences of Definition 1.2 are presented in the fol-
lowing propositions.

Proposition 2.1. Let V be a vector space over F. For every α ∈ F and
every v ∈ V the following equivalence holds:

αv = 0V ⇔ α = 0 ∨ v = 0V . (2.1)
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Proof. First we prove ⇐ in (2.1). The proof is in two parts. Let v ∈ V be
arbitrary and let α = 0. Then by SE we have that 0v ∈ V . By AO there
exists w ∈ V such that 0v + w = 0V . Then

0V = 0v + w by the choice of w

= (0 + 0)v + w since 0 + 0 = 0 in C, SE and AE

= (0v + 0v) + w by SD, AE

= 0v + (0v + w) by AA

= 0v + 0V by the choice of w, 0v + w = 0V , AE

= 0v by AZ.

This sequence of equalities proves 0v = 0V .
Let v = 0V and let α ∈ F be arbitrary. Then by SE we have that

α0V ∈ V . By AO there exists w ∈ V such that α0V + w = 0V . Then

0V = α0V + w by the choice of w

= α
(
0V + 0V

)
+ w by AZ, SE and AE

=
(
α0V + α0V

)
+ w by SD, and AE

= α0V +
(
α0V + w

)
by AA

= α0V + 0V by the choice of w and AE

= α0V by AZ.

This sequence of equalities proves α0V = 0V .
Now we prove ⇒ in (2.1). This implication is of the form p ⇒ q∨r, where

p, q, r are mathematical statements. The implication p ⇒ q∨ r is equivalent
to the implication p ∧ ¬q ⇒ r, since the negations of these implications are
identical. We proceed to prove

αv = 0V ∧ α ̸= 0 ⇒ v = 0V . (2.2)

Let α ∈ F and v ∈ V be arbitrary and assume αv = 0V and α ̸= 0. Since
α ∈ F \ {0}, we have that 1/α ∈ F. Then

0V =
(
1/α

)
0V by ⇐ in (2.1)

=
(
1/α

)(
αv
)

by SE and αv = 0V

=
((
1/α

)
α
)
v by SA

= 1v by SE and
(
1/α

)
α = 1 in F

= v by SO.

This sequence of equalities proves (2.2). Since (2.2) is equivalent to ⇒ in
(2.1), the proposition is proved. □

Proposition 2.2. Let V be a vector space over F. For every v ∈ V the
following equivalence holds

v + w = 0V ⇔ w = (−1)v. (2.3)
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Proof. Let v ∈ V be arbitrary. First we will prove ⇐ in (2.3). Let w =
(−1)v. Then

v + w = v + (−1)v by AE

= 1v + (−1)v by SO, and AE

=
(
1 + (−1)

)
v by SD

= 0v by 1 + (−1) = 0 in C and SE

= 0V by Proposition 2.1

The presented sequence of equalities proves ⇐ in (2.3).
Next we prove the converse, that is we prove ⇒ in (2.3). Assume v+w =

0V . Then

w = 0V + w by AZ and AC

= 0v + w by Proposition 2.1 and AE

=
(
(−1) + 1

)
v + w by (−1) + 1 = 0 in C, SE and AE

=
(
(−1)v + 1v

)
+ w by SD and AE

= (−1)v +
(
v + w

)
by AA, SO and AE

= (−1)v + 0V by v + w = 0V ,and AE

= (−1)v by AZ

The presented sequence of equalities proves ⇒ in (2.3).
Since v ∈ V was arbitrary, the proposition is proved. □

Definition 2.3. Let V be a vector space over F and let v ∈ V . The unique
solution of equation v+x = 0V is denoted by −v and it is called the opposite
of v. For u, v ∈ V instead of u+ (−v) we write u− v. ♢

Definition 2.4. Let V be a vector space over F, let vk ∈ V for every k ∈ N,
and let n ∈ N. The sum

n∑
k=1

vk

is defined as follows: If n = 1 set
1∑

k=1

vk = v1.

If n ∈ N \ {1} we use the definition by the finite recursion:

∀m ∈ {2, . . . , n} we set

m∑
k=1

vk =

(
m−1∑
k=1

vk

)
+ vm

♢

For example, if v1, v2, v3, v4, v5 ∈ V , then

v1 + v2 + v3 + v4 + v5 =
((

(v1 + v2) + v3
)
+ v4

)
+ v5
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Definition 2.5. Let n ∈ N, α1, . . . , αn ∈ F, and v1, . . . , vn ∈ V . The
expression

n∑
k=1

αkvk = α1v1 + · · ·+ αnvn

is called a linear combination of the vectors v1, . . . , vn in V . A linear com-
bination is said to be trivial if α1 = · · · = αn = 0; otherwise, it is called
nontrivial. ♢

3. Examples

Example 3.1. Setting V = F, then V is a vector space over F. The addition
in V = F is the addition of complex numbers in F and the scaling in V = F
is just the multiplication of complex numbers. The axioms of the vector
space then follow from the axioms of the axioms of real numbers if F = R
or axioms of the complex numbers if F = C. ♢

Example 3.2. This is the quintessential example of a vector space. Many
other specific vector spaces are special cases of this example. Let D be an
arbitrary nonempty set. Let V be the set of all functions from D to F. This
set is denoted by FD. The addition in FD is defined as follows: let f, g ∈ FD,
the function f + g is defined by

(f + g)(t) := f(t) + g(t) for all t ∈ D.

The scaling in FD is defined as follows: let α ∈ F and f ∈ FD, the function
αf is defined by

(αf)(t) := αf(t) for all t ∈ D.

The above definitions of addition and scaling of functions are called pointwise
definitions. As an exercise you should go through the proofs of all the axioms
of the vector space for this specific case.

It is important to highlight some prominent functions in FD. The first
among them are the constant functions. For an arbitrary fixed c ∈ F, define
f(t) = c for all t ∈ D.

The second are the indicator functions. For an arbitrary subset A ⊆ D,
define

χ
A
(t) =

{
1 if t ∈ A,

0 if t ∈ D \A.
In particular, for an arbitrary fixed s ∈ D and the singleton set A = {s},
we have

χ{s}(t) =

{
1 if t = s,

0 if t ∈ D \ {s}.
♢

Example 3.3. This is a special case of Example 3.2. Let n ∈ N and define

D = {t ∈ N : t ≤ n}.
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This set is often written simply as D = {1, . . . , n}. The vector space FD can
be naturally identified with Fn, the space of all n-tuples of elements of F.

Specifically, we identify the n-tuple (v1, . . . , vn) ∈ Fn with the function
f ∈ FD defined by

f(k) = vk for all k ∈ {1, . . . , n}.

For

x =

ξ1...
ξn

 ∈ FD,

this notation reads as follows:

x(k) = ξk for all k ∈ {1, . . . , n}.

At first glance, this approach may seem somewhat obscure, but it is com-
monly used in software packages, such as the computer algebra system Wol-
fram Mathematica. For instance, in Mathematica, the command

{a,b,c,d,e}[[3]] returns c.

Here, the double square brackets [[ ]] enclose the independent variable,
instead of the usual parentheses, reinforcing the idea of indexing as function
evaluation. ♢

Example 3.4. This is another special case of Example 3.2. Let m,n ∈ N
and

D =
{
(s, t) ∈ N× N : s ≤ m ∧ t ≤ n

}
;

that is D = {1, . . . ,m}×{1, . . . , n}. Then FD can be identified with the
space Fm×n of all m×n matrices with entries in F. ♢

Example 3.5. By F[z] we denote the set of all polynomials in variable z
with coefficients from F. Then F[z] is a vector space with addition and scalar
multiplication defined pointwise. ♢

The next example is a generalization of Example 3.2,

Example 3.6. Let D be an arbitrary nonempty set and let V be a vector
space over F. Let W be the set of all functions from D to V ; that is
W = V D. With the addition and scaling of functions defined pointwise, W
is a vector space over F. The functions in V D are said to be vector valued
functions. ♢

4. Set operations in a vector space

In a set theory class, we learned about set operations. For two sets A and
B, we defined A ∩B, A ∪B, A \B, and A∆B. In a vector space V over F,
the exploration of subsets is further enriched by two additional operations:
the addition of sets and the scaling of sets.
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Definition 4.1. Let V be a vector space over F and let A and B be
nonempty subsets of V . We define the sum of A + B by

A + B :=
{
u+ v : u ∈ A , v ∈ B

}
.

For α ∈ F we define αA by

αA :=
{
αu : u ∈ A

}
.

Let n ∈ N and let A1, . . . ,An be subsets of V . By recursion we define

A1 + · · ·+ Ak :=
(
A1 + · · ·+ Ak−1

)
+ Ak, k = 2, . . . , n.

By Axiom AA, the set A1 + · · ·+ An consists of all the sums v1 + · · ·+ vn
where vj ∈ Aj for all j ∈ {1, . . . , n}. ♢

5. Special subsets of a vector space

The following definition distinguishes important subsets of a vector space
V over F.

Definition 5.1. Let V be a vector space over F. A subset U of V is said
to be a subspace of V if the following three conditions are satisfied:

SuZ. 0V ∈ U .
SuA. U + U ⊆ U .
SuS. For every α ∈ F we have αU ⊆ U

♢

Proposition 5.2. An intersection of subspaces of a vector space is also a
subspace.

Proposition 5.3. A sum of subspaces of a vector space is also a subspace.

A union of subspaces of a vector space is not necessarily a vector space.
Problems 7.6 and 7.8 deal with this question.

Definition 5.4. Let A be a nonempty subset of V . The span of A is the
set of all linear combinations of vectors in A . The span of A is denoted by

span(A ).

The span of the empty set is the trivial vector space {0V }; that is,
span(∅) = {0V }.

If
V = span(A ),

then A is said to be a spanning set for V . ♢

It is useful to write down the definition of a span in set-builder notation.
Let A be a nonempty subset of V . Then

span(A ) =

v ∈ V :

∃m ∈ N
∃α1, . . . , αm ∈ F
∃u1, . . . , um ∈ A
such that v =

∑m
k=1 αkuk


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Theorem 5.5. Let A ⊆ V . Then span(A ) is a subspace of V .

Proof. Write a proof as an exercise. □

Proposition 5.6. If U is a subspace of V and A ⊆ U , then span(A ) ⊆ U .

Proof. Write a proof as an exercise. □

Definition 5.7. Let V be a vector space over R. A nonempty subset C of
V is said to be a cone in V if αC ⊆ C for all α > 0. ♢

Definition 5.8. Let V be a vector space over R. A nonempty subset S of
V is said to be a convex subset of V if αu+ (1− α)v ∈ S for all α ∈ [0, 1]
and all u, v ∈ S . ♢

Exercise 5.9. Let V be a vector space over R and let C be a cone in V .
Prove that C is a convex set if and only if C + C ⊆ C . ♢

6. Direct sums of subspaces

Let V be a vector space over F. Let X and Y be subspaces of V . Recall
that v ∈ X + Y if and only if there exist x ∈ X and y ∈ Y such that
v = x + y. A stronger version of the last statement is in the following
definition.

Definition 6.1. Let V be a vector space over F and let X and Y be
subspaces of V . The sum X +Y is called a direct sum if for every v ∈ X +Y
there exist unique x ∈ X and unique y ∈ Y such that v = x+y. The direct
sum is denoted by X ⊕ Y . Formally, the sum X + Y is direct if the
following implication holds: for all x1, x2 ∈ X and for all y1, y2 ∈ Y

x1 + y1 = x2 + y2 ⇒ x1 = x2 ∧ y1 = y2. (6.1)

♢

Example 6.2. Let F = R, V = R4,

X =
{
(x1, x2, x3, 0) : x1, x2, x3 ∈ R

}
and Y =

{
(0, y1, y2, y3) : y1, y2, y3 ∈ R

}
.

Then R4 = X + Y . However, this sum is not a direct sum. For v =
(v1, v2, v3, v4) ∈ R4 we can take x = (v1, s2, s3, 0) ∈ X and y = (0, v2 −
s2, v3 − s3, v4) ∈ Y with s2, s3 ∈ R arbitrary.

Setting

X =
{
(x1, x2, x2, 0) : x1, x2 ∈ R

}
and Y =

{
(0,−y1, y1, y2) : y1, y2 ∈ R

}
,

we have R4 = X ⊕ Y . Prove this as an exercise. ♢

Proposition 6.3. Let V be a vector space over F and let X and Y be
subspaces of V . The following statements are equivalent:

(a) The sum X + Y is direct.
(b) For all x, y ∈ V we have

x ∈ X ∧ y ∈ Y ∧ x+ y = 0V ⇒ x = y = 0V . (6.2)
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(c) X ∩ Y = {0V }.

Proof. The implication in (6.2) is a special case of the implication in (6.1).
Let x ∈ X , let y ∈ Y , and assume x+y = 0V . Then we have x+y = 0V +0V ,
and since 0V ∈ X and 0V ∈ Y , the implication in (6.1) yields x = 0V and
y = 0V . This proves (a) implies (b).

Assume (b). Let v ∈ X ∩ Y be arbitrary. Since X ∩ Y is a subspace,
−v ∈ X ∩ Y . Set x = v, y = −v in (b). Then (b) implies v = 0V . This
proves (c).

Assume (c). We need to prove the implication in (6.1). Let x1, x2 ∈ X
and y1, y2 ∈ Y be arbitrary and assume that x1 + y1 = x2 + y2. Then by
algebra in V we have

0V =
(
x1 + y1

)
−
(
x2 + y2

)
=
(
x1 − x2

)
−
(
y2 − y1

)
.

Consequently,

x1 − x2 = y2 − y1.

Since X is a subspace, x1−x2 ∈ X and since Y is a subspace, y2−y1 ∈ Y .
Therefore,

x1 − x2 = y2 − y1 ∈ X ∩ Y = {0V }.
Consequently, x1 = x2 and y1 = y2. This proves the implication in (6.1),
proving (a).

Since we proved (a)⇒(b)⇒(c)⇒(a), the propositions is proved. □

Definition 6.4. Let V be a vector space over F, let n ∈ N and let X1, . . . ,Xn

be subspaces of V . The sum X1+ · · ·+Xn is called a direct sum if for every
v ∈ X1 + · · · + Xn there exist unique xj ∈ Xj , j ∈ {1, . . . , n}, such that
v = x1 + · · ·+ xn. The direct sum is denoted by X1 ⊕ · · · ⊕ Xn. ♢

The preceding definition of the direct sum of subspaces written as an
implication is as follows: For all x1, . . . , xn, y1, . . . , yn ∈ V the following
implication holds

∀k ∈ {1, . . . , n} xk, yk ∈ Xk ∧
n∑

k=1

xk =

n∑
k=1

yk

⇒ ∀k ∈ {1, . . . , n} xk = yk. (6.3)

Proposition 6.5. Let V be a vector space over F, let n ∈ N and let
X1, . . . ,Xn be subspaces of V . The following statements are equivalent:

(a) The sum X1 + · · ·+ Xn is direct.
(b) For all x1, . . . , xn ∈ V the following implication holds

0V =

n∑
k=1

xk ∧ ∀k ∈ {1, . . . , n} xk ∈ Xk

⇒ ∀k ∈ {1, . . . , n} xk = 0V . (6.4)
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Proof. Assume (a). That is, assume that the implication in (6.3) holds.
Setting v = 0V and yk = 0V for all k ∈ {1, . . . , n} in (6.3), the implication
in (6.3) becomes (6.4). This proves (a)⇒(b).

Assume (b). To prove the implication in (6.3), let x1, . . . , xn, y1, . . . , yn ∈
V be arbitrary and assume

∀k ∈ {1, . . . , n} xk, yk ∈ Xk ∧
n∑

k=1

xk =
n∑

k=1

yk.

The preceding assumption yields

0V =

n∑
k=1

(xk − yk) ∧ ∀k ∈ {1, . . . , n} xk − yk ∈ Xk.

Now, by (6.4) we deduce

∀k ∈ {1, . . . , n} xk − yk = 0V .

This proves the implication in (6.3), proving (b).
The proposition is proved. □

In the next theorem we prove that the Cartesian product of two vector
spaces with appropriately defined vector addition and scalar multiplication
is a vector space.

Theorem 6.6. Let V and X be a vector spaces over F. Define the vec-
tor addition and scalar multiplication on the Cartesian product V × X as
follows. For all v, w ∈ V , all x, y ∈ X and all α ∈ F set

(v, x) + (w, y) = (v + w, x+ y), α(v, x) = (αv, αx). (6.5)

The set V × X with these two operations is a vector space.

Remark 6.7. Notice that the first plus sign in (6.5) is the addition in V ×X
which is being defined, the second plus sign is the addition in V and the
third plus sign is the addition in X . ♢

Definition 6.8. The set V × X with the operations defined in (6.5) is
called the direct product of the vector spaces V and X . ♢

7. Problems

Problem 7.1. In Definition 1.2 we use the same symbol + to denote to
different additions; one addition is the addition of complex numbers in F,
the other addition is the addition of vectors in the vector space V . Similarly,
the usage of the blank space between two symbols is ambiguous; between
two complex numbers it means the product of two complex numbers, while
between a complex number and a vector in V means scaling of that vector
by a complex number. As a learner you should pay attention and make sure
that you understand the meaning of the formulas that you are dealing with.
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Let us introduce some “funny” names for the algebraic operations that
appear in Definition 1.2.

VectorPlus : V ×V → V , Scale : F×V → V

Plus : F×F → F, Times : F×F → F.
Thus, for u, v ∈ V the sum of the vectors u and v is denoted by VectorPlus(u, v),
for α ∈ F and v ∈ V the scaling of the vector v by α is denoted by
Scale(α, v), for α, β ∈ F the sum of the complex numbers α and β is de-
noted by Plus(α, β), and for α, β ∈ F the product of the complex numbers
α and β is denoted by Times(α, β).

Just to clarify, in this notation we have Plus(2, 3) = 5 and Times(2, 3) = 6.
The distributive law for complex numbers in this notation reads: for all
complex numbers α, β and γ we have

Times
(
α,Plus(β, γ)

)
= Plus

(
Times(α, β),Times(α, γ)

)
.

Finally, your task in this problem is to rewrite the axioms SA, SD, SD,
and SO using the notation for the algebraic operations introduced above.

♢

Problem 7.2. Let R+ denote the set of positive real numbers, set

V = R+ × R+ = (R+)
2,

and let F = R. Define the addition and the scalar multiplication in V as

follows: For all

[
u1
u2

]
,

[
v1
v2

]
∈ V and all α ∈ F set[

u1
u2

]
+

[
v1
v2

]
=

[
u1v1
u2v2

]
, α

[
v1
v2

]
=

[
(v1)

α

(v2)
α

]
.

Prove that V with this vector addition and this vector scaling is a vector
space over R. ♢

Problem 7.3. In this problem (−1, 1) denotes the open interval of real
numbers. That is,

(−1, 1) =
{
x ∈ R : −1 < x ∧ x < 1

}
.

For u, v, x, y, z ∈ R with x > 0 and z ̸= 0 by

u+ v, u− v, uv,
y

z
, xu

we denote the standard algebraic operations in R. Set V = (−1, 1) and let
F = R. Define the vector addition and the scalar multiplication

| : V × V → V , ⟐ : R× V → V

on V by: For all u, v ∈ V and all α ∈ R set

u| v =
u+ v

1 + uv
, α⟐ v =

(1 + v)α − (1− v)α

(1 + v)α + (1− v)α
.

Prove that V with the vector addition | and the scaling ⟐ is a vector space
over R. ♢
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Problem 7.4. Consider the vector space RR of all real valued functions
defined on R. This vector space is considered over the field R. The purpose
of this exercise is to study some special subspaces of the vector space RR.
Let γ be an arbitrary real number. Consider the set

Sγ :=
{
f ∈ RR : ∃ a, b ∈ R such that f(t) = a sin(γt+ b), t ∈ R

}
.

(a) Do you see exceptional values for γ for which the set Sγ is particu-
larly simple? State them and explain why they are special.

(b) Prove that for every γ ∈ R the set Sγ is a subspace of RR.
(c) For each γ ∈ R find a basis for Sγ . Plot the function γ 7→ dimSγ .

The last item belongs to the next section of the notes. ♢

Problem 7.5. Let D be a nonempty set. Let FD be a vector space intro-
duced in Example 3.2. Let φ : D → D be a bijection. Set

Eφ =
{
f ∈ FD : f

(
φ(t)

)
= f(t) ∀t ∈ D

}
,

Oφ =
{
f ∈ FD : f

(
φ(t)

)
= −f(t) ∀t ∈ D

}
.

(a) Prove that Eφ and Oφ are subspaces of FD.
(b) Prove Eφ ∩ Oφ =

{
0FD

}
.

(c) In this item we explore the extreme cases for Eφ and Oφ.
(i) Characterize the bijections φ : D → D such that Eφ =

{
0FD

}
.

(ii) Characterize the bijections φ : D → D such that Eφ = FD.
(iii) Characterize the bijections φ : D → D such that Oφ =

{
0FD

}
.

(iv) Characterize the bijections φ : D → D such that Oφ = FD.
(d) Explore if there is a relationship between the following three pairs

of subspaces
(i) Eφ, Oφ.
(ii) Eφ−1 , Oφ−1 .

(Here φ−1 : D → D is the inverse bijection of φ : D → D.)
(iii) Eφ◦φ, Oφ◦φ.

(e) Using the definitions and notation introduced earlier in this problem,
characterize all functions in the set Eφ⊕Oφ. In particular, show that
Eφ ⊕ Oφ can be written in a simple closed form using the notation
established in this problem.

(f) Determine a necessary and sufficient condition on the bijection φ :
D → D under which the decomposition RD = Eφ ⊕ Oφ holds.

Notes:

(1) Parts of this problem are challenging. Exploring examples can guide
your thinking–create your own and think through the suggestions
below.

(2) Let D be an arbitrary nonempty set and let ι(t) = t be the identity
bijection on D. Describe Eι and Oι and think through the rest of
the problem in this trivial case.
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(3) The given problem is inspired by the concepts of odd and even func-
tions, which are first encountered in a precalculus class. In the pre-
calculus setting we have D = R, F = R and φ(t) = −t for all
t ∈ R. To build intuition, it is instructive to first consider the given
problem in this familiar precalculus framework. In this setting, the
prominent examples of even and odd functions are many. The most
notable ones are the hyperbolic cosine and hyperbolic sine:

cosh(t) =
1

2

(
exp(t) + exp(−t)

)
, ∀ t ∈ R,

sinh(t) =
1

2

(
exp(t)− exp(−t)

)
, ∀ t ∈ R.

Verify that cosh is an even function and sinh is an odd function.
Furthermore, verify and internalize the fundamental identity

et = exp(t) = cosh(t) + sinh(t), ∀ t ∈ R.

(4) Let a ∈ R. Consider D = R, F = R and φ(t) = t + a. Describe Eφ

and Oφ. What is φ ◦ φ? What is the relationship between Eφ, Oφ,
Eφ◦φ, and Oφ◦φ?

(5) Let D = {1, 2, 3}, F = R. There are six bijections on D:

t φ1(t) φ2(t) φ3(t) φ4(t) φ5(t) φ6(t)

1 1 1 2 2 3 3
2 2 3 1 3 1 2
3 3 2 3 1 2 1

Choose, one, two, or more of these bijections and explore questions
asked in the problem for those bijections.

It is important to recall Example 3.3 to explore this special case
in a more familiar setting.

(6) Let D = {1, 2, 3, 4}, F = R. There are twenty-four bijections on D:
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4
2 2 2 3 3 4 4 1 1 3 3 4 4 1 1 2 2 4 4 1 1 2 2 3 3
3 3 4 2 4 2 3 3 4 1 4 1 3 2 4 1 4 1 2 2 3 1 3 1 2
4 4 3 4 2 3 2 4 3 4 1 3 1 4 2 4 1 2 1 3 2 3 1 2 1

Choose, one, two, or more of these bijections and explore questions
asked in the problem for those bijections.

It is important to recall Example 3.3 to explore this special case
in a more familiar setting.

(7) Recall Example 3.4 and consider the special case m = n. In this
example, the vector space Rn×n of all n × n real mnatrices can be
identified with the vector space RD for a special choice of a set D.
With this choice of D, discover a bijection φ : D → D such that Eφ

is exactly the set of all symmetric n×n matrices. For the bijection φ
that you discovered characterize the matrices in Oφ. Explore online
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whether the matrices in Oφ have a common name associated with
them.

♢

Problem 7.6. Let V be a vector space over F. Let U and W be subspaces
of V . Prove that U ∪ W is a subspace of V if and only if U ⊆ W or
W ⊆ U . ♢

Problem 7.7. Let V be a vector space over F and let n ∈ N, n > 2. Let
U1, . . . ,Un be subspaces of V . If the union U1∪· · ·∪Un is a subspace, then

U1 ⊆ U2 ∪ · · · ∪ Un or Un ⊆ U1 ∪ · · · ∪ Un−1. (7.1)

♢

Proof. We will prove the contrapositive. Assume that (7.1) is not true. Then
there exist u1 ∈ U1 such that u1 ̸∈ Uj for all j ∈ {2, . . . , n} and there exist
un ∈ Un such that un ̸∈ Uj for all j ∈ {1, . . . , n− 1}.

Let α ∈ F \ {0}. Then αun ∈ Un since Un is a subspace and, since α ̸= 0,
αun ̸∈ Uj for all j ∈ {1, . . . , n− 1}.

Since u1 ∈ U1 and αun ̸∈ U1 we have u1 + αun ̸∈ U1 for all α ∈ F \ {0}.
Since u1 ̸∈ Un and αun ∈ Un we have u1 + αun ̸∈ Un for all α ∈ F.
Let m ∈ N be such that 1 < m < n. (Since n > 2 such m exists.) By the

choice of u1 and un we have u1 ̸∈ Um and αun ̸∈ Um for all α ∈ F \ {0}.
Therefore, for at most one α ∈ F \ {0} we can have u1 + αun ∈ Um. (If
u1 + αun ∈ Um and u1 + βun ∈ Um with α − β ̸= 0, then (u1 + αun) −
(u1 + βun) = (α − β)un ∈ Um with α − β ̸= 0 and un ̸∈ Um which is a
contradiction.)

Thus, for at most n− 2 numbers α ∈ F \ {0} we have

u1 + αun ∈ U1 ∪ · · · ∪ Un.

Since the set F \ {0} is infinite, there exists α ∈ F \ {0} such that

u1 + αun ̸∈ U1 ∪ · · · ∪ Un.

Recall that

u1, un ∈ U1 ∪ · · · ∪ Un.

The last two displayed relations show that U1 ∪ · · · ∪ Un is not a subspace
of V . □

Problem 7.8. Let V be a vector space over F and let n ∈ N. Let U1, . . . ,Un

be subspaces of V . Prove that the union U1 ∪ · · · ∪ Un is a subspace if and
only if there exists m ∈ {1, . . . , n} such that Uk ⊆ Um for all k ∈ {1, . . . , n}.
♢

Problem 7.9 (Samantha Smith). Let V be a vector space over F. Let
P(V ) be the power set of V , that is the set of all subsets of V . Set
W = P(V ) \ {∅}. Let the addition and scaling in W be defined as in
Section 4. Is W with these two operations a vector space over F? ♢
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Problem 7.10. Let V be a real vector space, that is a vector space over R.
Set

VC = V × V .

Define the vector addition in VC as follows: For all (u1, v1), (u2, v2) ∈ VC set

(u1, v1) + (u2, v2) = (u1 + u2, v1 + v2).

In VC, define the vector scaling with complex numbers as follows: For all
(u, v) ∈ VC and all α, β ∈ R set

(α+ iβ)(u, v) = (αu+ βv, αv + βu).

(a) Prove that VC with the vector addition and the vector scaling with
complex numbers defined as above is a complex vector space.

(b) Prove that function
I : V → VC

defined by
∀v ∈ V I(v) = (v, 0V )

is an injection which has the following property:

∀α, β ∈ R ∀u, v ∈ V I(αu+ βv) = αI(u) + βI(v).

The mapping I is called the natural embedding of V into VC.
(c) The range of I is the following subset of VC:{

(v, 0V ) ∈ VC : v ∈ V
}
= V × {0V }.

Prove that the set V × {0V } is not a subspace of VC.
(d) Prove that for all u, v ∈ V we have

(u, v) = (u, 0V ) + i(v, 0V ).

♢

Remark 7.11. (i) The complex vector space VC, defined in Problem 7.10,
is called the complexification of the real vector space V .

(ii) Based on item (b) in Problem 7.10, it is common to identify the
subset {

(v, 0V ) ∈ VC : v ∈ V
}
= V × {0V }

with the set V . With this identification, based on item (d) in Prob-
lem 7.10 we can write

VC = V + iV .

(iii) Let n ∈ N. Applying the definition of VC to the real vector space
Rn and using the observation in the preceding item we obtain that
VC = Cn; that is

(Rn)C = Cn;

or in words: The complexification of the real vector space Rn is the
complex vector space Cn.

The beauty of Problem 7.10 lies in its universality: any real vector space
V is embedded into a naturally defined complex vector space VC. This
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construction allows us to study real vector spaces using the powerful tools
that we will develop for complex vector spaces. ♢


