
. 

. , 
�={ 

l'i 

11 
111 

t1 
11,I

I ( 

llf

.anti
. I 

l'I 
I 

,1 
� 

11�1 



" 

·1
:::� 

I 
,•<ih 
l' 

868 Chapter Sixteen INTEGRATING FUNCTIONS OF SEVERAL VARIABLES 

16.1 THE DEFINITE INTEGRAL OF A FUNCTION OF TWO VARIABLES

The definite integral of a continuous one-variable function, f, is a limit of Riemann sums: 

lb 

J(x) dx = run L f(xi) Llx, 
a 

L'.x--tO 
i 

where xi is a point in the i th subdivision of the interval [a, b]. In this section we extend.this definition 
to functions of two variables. We start by considering how to estimate total population from a two­
variable population density. 

Population Density of Foxes in England 

Example1 

Solution 

The fox population in parts of England is important to public health officials concerned about the 
disease rabies, which is spread by animals. Biologists use a contour diagram to display the fox 
population density, D; see Figure 16.1, where Dis in foxes per square kilometer.' The bold contour 
is the coastline, which may be thought of as the D = 0 contour; clearly the density is zero outside 
it. We can think of Das a function of position, D = f(x, y) where x and y are in kilometers from 
the southwest corner of the map. 

kilometers north 

30 60 90 120 150 180 

Figure 16.1: Population density of foxes in southwestern England 

Estimate the total fox population in the region represented by the map in Figure 16.1. 

We subdivide the map into the rectangles shown in Figure 16.l and estimate the population in each 
rectangle. For simplicity, we use the population density at the northeast corner of each rectangle. For 
example, in the bottom left rectangle, the density is O at the northeast corner, in the next rectangle to 
the east (right), the density in the northeast corner is 1. Continuing in this way, we get the estimates 
in Table 16.1. To estimate the population in a rectangle, we multiply the density by the area of the 
rectangle, 30 · 25 = 750 km2

. Adding the results, we obtain 

Estimate of population = (0.2 + 0.7 + 1.2 + 1.2 + 0.1 + 1.6 + 0.5 + 1.4 

+ 1.1 + 1.6 + 1.5 + 1.8 + 1.5 + 1.3 + 1.1 + 2.0

+ 1.4 + 1.0 + 1.0 + 0.6 + 1.2)750 = 18,000 foxes.

Taking the upper and lower bounds for the population density on each rectangle enables us to find 
upper and lower estimates for the population. Using the same rectangles, the upper estimate is 
approximately 35,000 and the lower estimate is 4,000. There is a wide discrepancy between the 
upper and lower estimates; we could make them closer by taking finer subdivisions. 

I Adapted from J. D. Murray, Marhe111atical Biology, Springer-Verlag, 1989. 
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Table 16.1 Estimates of population density (northeast corner)

0.0 0.0 0.2 0.7 1.2 1.2 

0.0 0.0 0.0 0.0 0.1 1.6 

0.0 0.0 0.5 1.4 1.1 1.6 

0.0 0.0 1.5 1.8 1.5 1.3 

0.0 1.1 2.0 1.4 1.0 0.0 

0.0 1.0 0.6 1.2 0.0 0.0 

Definition of the Definite Integral 

869 

The sums used to approximate the fox population are Riemann sums. We now define the definite 
integral for a function f of two variables on a rectangular region. Given a continuous function 
f(x, y) defined on a region a :S x :S b and c :S y :S d, we subdivide each of the intervals 
a :S x :S b and c :S y :S cl into n and m equal subintervals respectively, giving nm subrectangles. 
(See Figure 16.2.) 

I' 

d=ym 

Y3 
Y2 
Y1 

c = Yo 

y 

I 
x 

Xn = b 

Figure 16.2: Subdivision of a rectangle into nm subrectangles 

The area of each subrectangle is LlA = Llx Lly, where Llx = (b - a)/n is the width of each 
subdivision on the x-axis, and Lly = (cl - c)/m, is the width of each subdivision on the y-axis. To 
compute the Riemann sum, we multiply the area of each subrectangle by the value of the function at 
a point in the rectangle and add the resulting numbers. Choosing the point which gives the maximum 
value, l\1/;1·, of the function on each rectangle, we get the upper sum, '\'"' .. Jvfi1 LlxLly . • L..Ji,J 

The lower sum, Li ,j Lij LlxLly, is obtained by taking the minimum value on each rectangle. If
( Uij, Vij) is any point in the ij-th subrectangle, any other Riemann sum satisfies 

L LijLlxLly $ L f(uij, Vij) Llx Lly :SL M;iLlxLly. 
i,j i,j i,j 

We define the definite integral by taking the limit as the numbers of subdivisions, n and m, tend to 
infinity. By compaiing upper and lower sums, as we did for the fox population, it can be shown that 
the limit exists when the function, f, is continuous. We get the same limit by letting Llx and Lly 

tend to 0. Thus, we have the following definition: 

Suppose the function f is continuous on R, the rectangle a :S x :S b, c :S y :S d. If ( Uij, Vij) 
is any point in the ij-th subrectangle, we define the definite integral off over R 

Such an integral is called a double integral. 

1 IIII 

I 

.� 
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The case when R is not rectangular is considered on page 872. Sometimes we think of dA as
being the area of an infinitesimal rectangle of length dx and height dy, so that dA = dx dy. Then
we use the notation2 

l .f dA = l f(x, y) dx dy.

For this definition, we used a particular type of Riemann sum with equal-sized rectangular 
subdivisions. In a general Riemann sum, the subdivisions do not all have to be the same size. 

Interpretation of the Double Integral as Volume 

Example2 

Solution 

Just as the definite integral of a positive one-variable function can be interpreted as an area, so the 
double integral of a positive two-variable function can.be interpreted as a volume. In the one-variable 
case we visualize the Riemann sums as the total area of rectangles above the subdivisions. In the 
two-variable case we get solid bars instead of rectangles. As the number of subdivisions grows, the 
tops of the bars approximate the surface better, and the volume of the bars gets closer to the volume 
under the graph of the function. (See Figure 16.3.) 

Figure 16.3: Approximating volume under a graph with finer and finer Riemann sums 

Thus, we have the following result: 

If x, y, z represent length and f is positive, then 

Volume under graph 
off above region R

Let R be the rectangle O :::; x :::; 1 and O :::; y :::; 1. Use Riemann sums to make upper and lower 
estimates of the volume of the region above Rand under the graph of z = e-(x

2

+Y
2

). 

If R is the rectangle O :::; x :::; 1, 0 :::; y :::; 1, the volume we want is given by 

Volume= l e-(x2

+Y
2

) dA.

We divide R into 16 subrectangles by dividing each edge into four parts. Figure 16.4 shows that 
f(x, y) = e-(x2

+Y
2

) decreases as we move away from the origin. Thus, to get an upper sum we 
evaluate f on each subrectangle at the corner nearest the origin. For example, in the rectangle 
0:::; x:::; 0.25, 0:::; y:::; 0.25, we evaluate fat (0, 0). Using Table 16.2, we find that 

2 Another common notation for the double integral is J J
R 

J dA.
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z 

-
-
-
-
-

Figure 16.4: Graph of e-(:z:2
+Y

2
) above the rectangle R

Upper sum= ( 1 +0.9394 + 0.7788 + 0.5698 
+0.9394 + 0.8825 + 0.7316 + 0.5353
+0.7788 + 0.7316 + 0.6065 + 0.4437
+0.5698 + 0.5353 + 0.4437 + 0.3247)(0.0625) = 0.68.

871 

To get a lo�er sum, we evaluate f at the opposite corner of each rectangle because the surface 
slopes down in both the x and y directions. This yields a lower sum of 0.44. Thus, 

0.44 :::; l e-(x
2

+Y
2

) dA :=:; 0.68.

To get a better approximation, we use more subdivisions. See Table 16.3. 

Table 16.2 Values of f(x, y) = e-(x2+Y2) on the rectangle R

y 

0.0 0.25 0.50 0.75 

0.0 1 0.9394 0.7788 0.5698 

0.25 0.9394 0.8825 0.7316 0.5353 

x 
0.50 0.7788 0.7316 0.6065 0.4437 

0.75 0.5698 0.5353 0.4437 0.3247 

1.00 0.3679 0.3456 0.2865 0.2096 

Table 16.3 Riemann sum approximations to JR 
e-(x2

+Y
2

) dA

Number of subdivisions in x and y directions 
8 16 32 64 

Upper 0.6168 0.5873 0.5725 0.5651 

Lower 0.4989 0.5283 0.5430 0.5504 

1.00 

0.3679 

0.3456 

0.2865 

0.2096 

0.1353 

The true value of the double integral, 0.5577 . . .  , is trapped between the lower and upper sums. 
Notice that the lower sum increases and the upper sum decreases as the number of subdivisions 
increases. However, even with 64 subdivisions, the lower and upper sums agree with the true value 
of the integral only in the first decimal place. 

Interpretation of the Double Integral as Area 

In the special case that f(x, y) = 1 for all points (x, y) in the region R, each term in the Riemann 
sum is of the form 1 · b.A = b.A and the double integral gives the area of the region R: 

I� 
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Area(R) = l IdA = l dA

Interpretation of the Double Integral as Average Value 

As in the one-variable case, the definite integral can be used to compute the average value of a
function:

We can rewrite this as

Average value off
on the region R

1 { f dA
Area of R JR 

Average value x Area of R = l f dA.

If we interpret the integral as the volume under the graph off, then we can think of the average
value off as the height of the box with the same volume that is on the same base. (See Figure 16.5.)
Imagine that the volume urider the graph is made out of wax. If the wax melted within the perimeter
of R, then it would end up box-shaped with height equal to the average value off.

z 

Base of the box 

is the rectangle R 
I Average value of f

Figure 16.5: Volume and average value

Integral over Regions that Are Not Rectangles 

We defined the definite integral J
R

J(x,y) dA, for a rectangular region R. Now we extend the
definition to regions of other shapes, including triangles, circles, and regions bounded by the graphs
of piecewise continuous functions. 

To approximate the definite integral over a region, R, which is not rectangular, we use a grid
of rectangles approximating the region. We obtain this grid by enclosing R in a large rectangle and
subdividing that rectangle; we consider just the subrectangles which are inside R. 

As before, we pick a point ( u,;j, V;j ) in each subrectangle and form a Riemann sum

L f(uij, Vij)6x6y.
·i,j 

This time, however, the sum is over only those subrectangles within R. For example, in the case of
the fox population we can use the rectangles which ai·e entirely on land. As the subdivisions become
finer, the grid approximates the region R more closely. For a function, f, which is continuous on R,
we define the definite integral as follows:

{ f dA = lim Lf(uij,Vij )6x6y 

j R 6x,6y--+0 . .  
t,J 

where the Riemann sum is taken over the subrectangles inside R.
You may wonder why we can leave out the rectangles which cover the edge of R-if we in­

cluded them, might we get a different value for the integral? The answer is that for any region that
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we are likely to meet, the area of the subrectangles covering the edge tends to O as the grid becomes
finer. Therefore, omitting these rectangles does not affect the limit.

Convergence of Upper and Lower Sums to Same Limit 

Example3 

Solution 

We have said that if f is continuous on the rectangle R, then the difference between upper and lower
sums for f converges to O as Lix and Liy approach 0. In the following example, we show this in a
particular case. The ideas in this example can be used in a general proof.

Let f(x, y) = x2
y and let R be the rectangle O :::; x :::; 1, 0 :::; y :::; 1. Show that the difference

between upper and lower Riemann sums for f on R converges to 0, as Lix and Liy approach O.

The difference between the sums is

LMij6x6y- LLij 6x6y = 2'.:)Mij - Lij) 6x6y,

where JV!ij and Lij ai:e the maximum and minimum off on the ij-th subrectangle. Since f increases
111 both the .'.C and y dl!'ections, lYiij occurs at the corner of the subrectangle farthest from the origin
and Lij at the closest. Moreover, since the slopes in the x and y directions don't decrease as x and
Y increase, the difference Ji;Jij - Lij is largest in the subrectangle Rnrn which is farthest from the
origin. Thus, •

L(Mij - Lij) 6x6y :S: (Mnrn - Lnrn) L 6x6y = (Mnrn - Lnrn)Area(R).

Thus, the difference converges to O as long as (.t..1,,rn - Lnrn) does. The maximum li1nrn off on
the nm-th subrectangle occurs at (1, 1), the subrectangle's top right corner, and the minimum Lnrn
occurs at the opposite corner, (1 - 1/n, 1 - 1/m). Substituting into J(x, y) = x2

y gives

Mnm - Lnm = (1)2(1) - (1- 2-) 2 

(1- _2__) = � _ 2. + _2__ _ � + _1_,
n m n n2 m nm, n2rn 

The right-hand side converges to O as n, m----+ oo, that is, as 6x, 6y ----+ O.

Exercises and Problems for Section 16.1 

Exercises 

1. Table 16.4 gives values of the function f (x, y ), which
is increasing in x and decreasing in y on the region
R : 0 S x S 6, 0 S y S 1. Make the best possible
upper and lower estimates of J

R 
J(x, y) dA. 

Table 16.4

x 

0 3 6 

0 5 7 10 

y 0.5 4 5 7 

1 3 4 6 

2. Values of f(x, y) are in Table 16.5. Let R be the rect­
angle 1 S x ::::; 1.2, 2 S y S 2.4. Find Riemann
sums which are reasonable over and underestimates for
J

R 
f(x, y) dA with 6.x = 0.1 and 6.y = 0.2.

Table 16.5

x 

1.0 1.1 1.2 

2.0 5 7 10 

y 2.2 4 6 8 

2.4 3 5 4 

3. Figure 16.6 shows contours of g(x, y) on the region R,
with 5 S x S 11 and 4 S y ::::; 10. Using 6.x =
6.y = 2, find an overestimate and an underestimate for 
J

R 
g(x, y)dA. 

Figure 16.6
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4. Figure 16.7 shows contours of f(x, y) on the rectangle
R with O :::; x :::; 30 and O :::; y :::; 15. Using l::.x = 10
and l::.y = 5, find an overestimate and an underestimate
for J

R 
f(x, y)dA.

10 20 30 

Figure 16.7 

5. Figure 16.8 shows a contour plot of population density,
people per square kilometer, in a rectangle of land 3 km 

Problems 

In Problems 6-12, decide (without calculation) whether the 
integrals are positive, negative, or zero. Let D be the region 
inside the unit circle centered at the origin, let R be the right 
half of D and let B be the bottom half of D. 

6. J
D 

dA 

8. J3 5xdA

10. Js (Y3 
+ ys ) dA

12. J3
(y-y3 ) dA

7. J
R 

5xdA 

9. J
D

(y3 
+ y5 ) dA 

11. J
D

(y - y3
) dA 

13. Figure 16.9 shows contours of f(x, y). Let R be the 
square -0.5 :::; x :::; 1, -0.5 :::; y :::; 1. ls the integral
JR f dA positive or negative? Explain your reasoning.

y 

0 

-1.0 ���-� _..__L____L___ _J....,e'":_____J 

-1.0 -0.5 0 0.5 1.0 1.5 2.0 

Figure 16.9 

14. Table 16.6 gives values of f (x, y ), the number of mil­
ligrams of mosquito larvae per square meter in a swamp.

by 2 km. Estimate the population in the region repre­
sented by Figure 16.8. 

x 

1 2 3 

Figure 16.8 

If x and y are in meters and R is the rectangle O :::; x :::; 8, 
0:::; y:::; 6, estimate J

R 
f(x, y)dA. Give units and inter­

pret your answer. 

Table 16.6 

x 

0 4 8 

0 1 3 6 

y 3 2 5 9 

6 4 9 15 

15. Figure 16. IO shows the temperature, in °C, in a 5 meter
by 5 meter heated room. Using Riemann sums, estimate
the average temperature in the room.

y(m) 

5 

2 3 

Figure 16.10 

4 5 

16. Use four subrectangles to approximate the volume of the
object whose base is the region O :::; x :::; 4 and O :::; y :::;
6, and whose height is given by f (x, y) = x +y. Find an 
overestimate and an underestimate and average the two. 

Strengthen Your Understanding 

In Problems 17-18, explain what is wrong with the statement. 

17. For all f, the integral J
R 

f(x, y) dA gives the volume of
the solid under the graph off over the region R.

18. If Ris a region in the third quadrant where x < 0, y < O,
then J

R 
f(x, y) dA is negative.

In Problems 19-20, give an example of: 

19. A function f (x, y) and rectangle R such that the Rie­
mann sums obtained using the lower left-hand corner of 
each subrectangle are an overestimate. 

20. A function f(x, y) whose average value over the square
0 :::; x :::; 1, 0 :::; y :::; 1 is negative.

Are the statements in Problems 21-30 true or false? Give rea­
sons for your answer. 

21. The double integral JR f cL4 is always positive.

22. If f(x,y) = k for all points (x,y) in a region R then
J

R f dA = k · Area(R).

16.2 ITERATED INTEGRALS
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23. If R is the rectangle O < x < 1, 0 :::; y :::; 1 then
J

R
e'"Y dA > 3. 

24. If R is the rectangle O < x :::; 2, 0 < y :::; 3 and 
S is the rectangle -2 :::; x :::; 0, -3 < y :::; O then 
J

R 
f dA = - J

5 
f dA. 

25. Let p(x, y) be the population density of a city, in people
per km2 . If Ris a region in the city, then J

R 
p dAgives

the total number of people in the region R.

26. If J
R 

f dA = 0 then f(x, y) = 0 at all points of R.

27. If g(x, y) = kf (x, y), where k is constant, then
J

R
gdA = k J

R 
f dA.

28. If f and g are two functions continuous on a region R,

then J
R

!· gdA = J
,R

f dA · J
R

gdA.

29. If R is the rectangle O:::; x:::; 1,0:::; y:::; 2 and Sis

the square O:::; x:::; 1,0:::; y:::; 1, then JR J dA
2J

5 
f dA.

30. If R is the rectangle 2 :::; x :::; 4, 5 :::; y :::; 9,
f(x, y) = 2x and g(x, y) = x + y, then the average
value off on R is less than the average value of g on R.

In Section 16.1 we approximated double integrals using Riemann sums. In this section we see how 
to compute double integrals exactly using one-variable integrals. 

The Fox Population Again: Expressing a Double Integral as an Iterated Integral 

To estimate the fox population, we computed a sum of the form 

· Total population ;:::o L f(uij, ViJ)i6.x i6.y ,
i )j 

where 1 � i � n and 1 � j � m and the values f ( Uij, Vij) can be arranged as in Table 16. 7 .. 

Table 16.7 Estimates for/ox population densities for n = m = 6

0.0 0.0 0.2 0.7 1.2 1.2 
0.0 0.0 0.0 0.0 0.1 1.6 
0.0 0.0 0.5 1.4 1.1 1.6 
0.0 0.0 1.5 1.8 1.5 1.3 
0.0 1.1 2.0 1.4 1.0 0.0 
0.0 1.0 0.6 1.2 0.0 0.0 

For any values of n and m, we can either add across the rows first or add down the columns 
first. If we add rows first, we can write the sum in the form 

Total population ;:::o t (t f(uij, Vij)i6.x) i6.y.
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Example1 

Solution 

The inner sum, L f ( Uij, V-ij) 6.x, approximates the integral J;80 
f (x, Vij) dx. Thus, we have

i=l 

Total population 
:::::o t, (1

180 

f (x, Vij) dx) 6.y.
The outer Riemann sum approximates another integral, this time with integrand J

0

180 
f ( x, y) dx, 

which is a functioIJ of y. Thus, we can write the total population in terms of nested, or iterated, one­
variable integrals: 

r 150 ( {180 ) 

Total population= 
lo lo 

J(x, y) dx dy. 
Since the total population is represented by J

R 
f dA, this suggests the method of computing 

double integrals in the following theorem: 3 

Theorem 16.1: Writing a Double Integral as an Iterated Integral 

If R is the rectangle a :::; x :::; b, c :::; y :::; d and f is a continuous function on R, then the 
integral off over R exists and is equal to the iterated integral

. 
The expression J:_::cd ( J�1:::: f ( x, y) dx) dy can be written t J: f ( x, Y) dx dy.

To evaluate the iterated integral, first perform the inside integral with respect to x, holding y 
constant; then integrate the result with respect toy. 

A building is 8 meters wide and 16 meters long. It has a flat roof that is 12 meters high at one corner, 
and 10 meters high at each of the adjacent corners. What is the volume of the building? 

If we put the high corner on the z-axis, the long side along the y-axis, and the short side along the 
x-axis, as in Figure 16.11, then the roof is a plane with z-intercept 12, and x slope (-2) / 8 = -1 / 4,
and y slope (-2)/16 = -1/8. Hence, the equation of the roof is

z = 12 - ix - h· 

The volume is given by the double integral 

Volume= l (12 - ix - kY) dA,
where R is the rectangle O :::; x :::; 8, 0 :::; y :::; 16. Setting up an iterated integral, we get 

The inside integral is 

{16 {8
Volume= 

lo lo 
(12 - ix - h) dx dy. 

8 
1
x=8 

1 (12 - ix - h) dx = (12x - kx2 
- kxy) 

x=O 
= 88 - y.

3For a proof, see M. Spivak, Calc11/11s on Manifolds, pp. 53 and 58 (New York: Benjamin, 1965). 

z(m) 

16.2 ITERATED INTEGRALS 

Then the outside integral gives 

Volume= 1
16 

(88 - y) dy = (88y - !y2 )c = 1280.

The volume of the building is 1280 cubic meters. 

z 

x 
y 

877 

Figure 16.11: A slant-roofed building Figure 16.12: Cross-section of a building 

Notice that the inner integral J
0

8 (12 - ix - kY) dx in Example 1 gives the area of the cross 
section of the building perpendicular to the y-axis in Figure 16.12. 

The iterated integral J
0

16 
J
0

8 (12 - ix - kY) dxdy thus calculates the volume by adding the
volumes of thin cross-sectional slabs. 

The Order of Integration 

Example2 

Solution 

In computing the fox population, we could have chosen to add columns (fixed x) first, instead of the 
rows. This leads to an iterated integral where x is constant in the inner integral instead of y. Thus, 

where R is the rectangle a :::; x :::; b and c :::; y :::; d.

For any function we are likely to meet, it does not matter in which order we integrate over a 
rectangular region R; we get the same value for the double integral either way. 

l f dA � [ (l J(x,y) ds) dy" l ([ f(x,y)dy) d.s

Compute the volume of Example 1 as an iterated integral by integrating with respect to y first. 

Rewriting the integral, we have 

Volume= 1
8 

(1
1

\12 - ix - h) dy) dx = 1
8

Cl2y - ixy - 1�y2 {::
6

) dx 
= 1

8 

(176 - 4x) dx = (l 76x - 2x2 ) [ = 1280 meter3 . 
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Iterated Integrals Over Non-Rectangular Regions 

Example3 

Solution 

y 
d 

c 

,_
I 

I 

a 

The density at the point (x,y) of a triangular metal plate, as shown in Figure 16.13, is 8(x,y).
Express its mass as an iterated integral. 

'---- - - -�-- x

1 

Figure 16.13: A triangular metal plate with density o(x, y) at the point (x, y)
Approximate the triangular region using a grid of small rectangles of sides Lix and Liy. The mass
of one rectangle is given by 

Mass of rectangle� Density· Area� 8(x, y)Lixt.y.
Summing over all rectangles gives a Riemann sum which approximates the double integral:

Mass= f 8(x, y) dA,
}R 

where R is the triangle. We want to compute this integral using an iterated integral. 
Think about how the iterated integral over the rectangle a ::::; x ::::; b, c ::::; y ::::; d works: 

ibid a c f(x,y)dydx.
The inside integral with respect toy is along vertical strips which begin at the horizontal line y = c
and end at the line y d. There is one such strip for each x between x = a and x = b. (See
Figure 16.14.) 

y 

I 
-

I 

x b (x, 0) 

Figure 16.14: Integrating over a 

rectangle using vertical strips 

Figure 16.15: Integrating over a 

triangle using vertical strips 

Figure 16.16: Integrating over a 

triangle using horizontal strips 

For the triangular region in Figure 16.13, the idea is the same. The only difference is that the
individual vertical strips no longer all go from y = c to y = d. The vertical strip that starts at the
point (x, 0) ends at the point (x, 2 - 2x ), because the top edge of the triangle is the line y = 2 - 2x.
See Figure 16.15. On this vertical strip, y goes from Oto 2 - 2x. Hence, the inside integral is 

1
2

-2x 8(x, y) dy.
Finally, since there is a vertical strip for each x between O and 1, the outside integral goes fromx = 0 to x = 1. Thus, the iterated integral we want is 

1
l 

1
2-2x 

Mass= 
0 0 

8(x,y)dydx.

Example4 

Solution 

Examples 

Solution 
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We could have chosen to integrate in the opposite order, keeping y fixed in the inner integral
instead of x. The limits are formed by looking at horizontal strips instead of vertical ones, and
expressing the x-values at the end points in terms of y. To find the right endpoint of the strip, we
use the equation of the top edge of the triangle in the form x = 1 - !Y . Thus, a horizontal strip goes
from x = 0 to x = 1 - !Y · Since there is a strip for every y from Oto 2, the iterated integral is 

1
2

1
1-!y 

Mass= 
0 0 

8(x, y) dx dy.

Limits on Iterated Integrals 

• The limits on the outer integral must be constants.
• The limits on the inner integral can involve only the variable in the outer integral. For

example, if the inner integral is with respect to x, its limits can be functions of y. 

Find the mass M of a metal plate R bounded by y = x and y = x 2
, with density given by 8 ( x, y) =

1 + xy kg/m�ter2
. (See Figure 16.17.) 

y (meters) 
(1, 1) 

y=x 
y = x2 

IL....,e::::__ _ _ _ _ __ x (meters) 

Figure 16.17: A metal plate with density o(x,y) 

The mass is given by

M = 
l 8(x,y)dA.

We integrate along vertical strips first; this means we do the y integral first, which goes from the
bottom boundary y = x 2 to the top boundary y = x. The left edge of the region is at x = 0 and the
right edge is at the intersection point of y = x and y = x 2

, which is ( 1, 1). Thus, the x-coordinate
of the vertical strips can vary from x = 0 to x = 1, and so the mass is given by 

M = 1
l 

1
x 8(x, y) dy dx = 1

l 

1
x 

(1 + xy) cly clx.
O x2 0 x2 

Calculating the inner integral first gives

M = 1
1

1\1 + xy) clydx = 1 1 (y + x Y
2 ) 1

y=x 

dx
O x2 0 2 

y=x2 

1 1 ( 2 x3 x5

) ( 
x 2 x3 x4 x 6

) 
1
1 5 = o x - x + 2 - 2 dx = 2 - 3 + 8 -

12 o 
= 24 = 0.208 kg.

A city occupies a semicircular region of radius 3 km bordering on the ocean. Find the average
distance from points in the city to the ocean. 

Think of the ocean as everything below the x-axis in the xy-plane and think of the city as the upper
half of the circular disk of radius 3 bounded by x 2 + y 2 = 9. (See Figure 16.18.) 
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Example6 

Solution 

y 
3x2 

+ y2 = 9 (x, Jg - x2) 

(-/9-y2 ,y) 

I 
I 
I 

_______________ L __ 
I 
I 
I 
I 

(�,y)

�- -- ---� _ __ ..,___ _ ____,_ x 
-3 (x, 0) 3

Figure 16.18: The city by the ocean showing a typical vertical strip and a typical horizontal strip 

The distance from any point (x, y) in the city to the ocean is the vertical distance to the x-axis, 
namely y. Thus, we want to compute 

Average distance = \ ) ( y dA,
Area R JR 

where R is the region between the upper half of the circle x2 + y2 = 9 and the x-axis. The area of
R is 1r32 /2 = 91r /2. 

To compute the integral, let's take the inner integral with respect to y. A vertical strip goes from 
the x-axis, namely y = 0, to the semicircle. The upper limit must be expressed in terms of x, so we
solve x2 + y2 

= 9 to get y = Jg -x2 . Since there is a strip for every x from -3 to 3, the integral 
is: 

1 1
3 

(1 v'9=x2 ) 1
3 

( 
y2 

I 
y

= 

v'§=x2) y dA = y d y dx = - dx
R - 3 . 

0 
-3 

2 
y

=O 

= 13 
-
2

1
(9-x2)dx = � (9x - x

3
) 1

3 

= �(18- (- 18)) = 18.
-3 2 3 -3 2 

Therefore, the average distance is 18/(91r/2) = 4/1r = l.273 km. 
What if we choose the inner integral with respect to x? Then we get the limits by looking at 

horizontal strips, not vertical, and we solve x2 + y2 
= 9 for x in terms of y. We get x = -/9 - y2 

at the left end of the strip and x = Jg - y2 at the right. There is a strip for every y from O to 3, so 

( ydA� (
3 (1� ydx) 

d y = (
3 

(yxl
x=

�) d y = (
3 

2y �d y JR Jo -� Jo x=-� Jo 

2 
1
3 2 = -

3
(9 - y2)3/2 

0 
= -3(0 - 27) = 18.

We get the ame result as before. The average distance to the ocean is (2/(91r))l8 = 4/1r = 1.273 km.

In the examples so far, a region was given and the problem was to determine the limits for an 
iterated integral. Sometimes the limits are known and we want to determine the region. 

1
6;·2 

Sketch the region of integration for the iterated integral x#+i d y dx. 
O x/3 

The inner integral is with respect to y, so we imagine the region built of vertical strips. The bottom 
of each strip is on the line y = x/3, and the top is on the horizontal line y = 2. Since the limits of 
the outer integral are O and 6, the whole region is contained between the vertical lines x = O and 
x = 6. Notice that the lines y = 2 and y = x/3 meet where x = 6. See Figure 16.19.

Example? 

Solution 

16.2 ITERATED INTEGRALS 'i�: y�2 (6, 2) 

. 
y = x/3 

x 
6 

Figure 16.19: The region of integration for Example 6, showing the vertical strip 

Reversing the Order of Integration 

881 

It is sometimes helpful to reverse the order of integration in an iterated integral. An integral which 
is difficult or impossible with the integration in one order can be quite straightforward in the other. 
The next example is such a case. 

Evaluate (
5 

f 2 x J y3 + 1 d y dx using the region sketched in Figure 16.19.
Jo Jx/3 

Since Jy3 + 1 has no elementary antiderivative, we cannot calculate the inner integral symboli­
cally. We try reversing the order of integration. From Figure 16.19, we see that horizontal strips go 
from x = 0 to x = 3y and that there is a strip for every y from O to 2. Thus, when we change the
order of integration we get 

(
5 12 

x/y
3 + 1 d ydx = !

2 

(
3

y x/y
3 + 1 dx d y.

Jo x/3 Jo Jo 
Now we can at least do the inner integral because we know the antiderivative of x. W hat about the
outer integral? 

1
2

1
3

y 1
2 

(
x2 

) 
1

x=3

y 1
2 g

1 
2 

x#+idxd y = �jy3+1 
d y =

T(y
3 + l)112d y 

0 0 0 x=O O 

= (y3 + 1)312[ = 27 - 1 = 26.

Thus, reversing the order of integration made the integral in the previous problem much easier. 
Notice that to reverse the order it is essential first to sketch the region over which the integration is 
being performed. 

Exercises and Problems for Section 16.2 

Exercises 

In Exercises 1-4, sketch the region of integration. 

1.1
-rr 1x 

ysinxdydx 2. [11Y 

xydxdy 
Jo y2 

1
1 

1
COS

7rX 

4. ydydx 
O x-2 

For Exercises 5-12, evaluate the integral. 
5. 

r
3 

r
v 

11. 
Jo Jo

sin x dx dy 1-rr/

2 
lsin

x 

12. xdydx
0 0 

For Exercises 13-16, sketch the region of integration and eval­
uate the integral. 

1
3

1
4 

( 4x + 3y) dx dy
6. 

1
2

13 

13. 13 14 

e"'+Y dy dx 

0 0 

(x2 
+ y2) dy dx 

5 ·2x

7

. 1
3

1
2 

6xy dy dx 
15. J 1 sinxdydx 
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In Exercises 17-22, write J
R 

f dA as an iterated integral for 
the shaded region R.

17. y

2 

1 

0 

19. 

-2

Problems 

1 2 3 4 

2 3 

18. y 

x 
x 

4 

20. y
6

�, 

x 

3 5 

In Problems 28-31, integrate f (x, y) = xy over the region R.

28. y 29. y

'W R 
x 

1 ,__ _ __ __,_ x 

-1 I

30. y 31. y 

B_ x !D x 

2 2 

32. (a) Use four subrectangles to approximate the volume
of the object whose base is the region O S x S 4 
and O S y S 6, and whose height is given by
f ( x, y) = xy. Find an overestimate and an under­
estimate and average the two. 

(b) Integrate to find the exact volume of the three­
dimensional object described in part (a).

In Problems 33-37, evaluate the integral by reversing the or­
der of integration. 

21. y 22. y

:o 112 1 

0 ' x 
2 3 2 3 4 

For Exercises 23-27, evaluate the integral. 

23. J
R 

Jx + y dA, where R is the rectangle O S x S 1, 
OS y S 2. 

24. Calculate the integral in Exercise 23 using the other order
of integration.

25. J
R

(5x2 
+ 1) sin 3y dA, where R is the rectangle -1 S 

x S 1, 0 S y S 1r /3. 
26. j� xy dA, where R is the triangle x + y S 1, x 2

0, y 2 0.
27. f

R
(2x + 3y)2 dA, where R is the triangle with vertices

at (-1, 0), (0, 1), and (1, 0). 

33. 1111 x
2 

O Y e· 
dxdy 34. 1

1 

1
1 

sin (x2) dx dy 
O y 

35.1
1 

/
1 

/2 + x3 dxdy 
O v'Y 

36. 1319 

y sin(x2) dx dy 
O y2 

37. 1
1 le 

__::__ dx dy 
o eY 

In X 

38. Find the volume under the graph of the function
f(x, y) = 6x2y over the region shown in Figure 16.20.

39. (a)

(b) 

y 

2 3 4 

Figure 16.20 

x 

Find the volume below the surface z = x2 
+ y2 and 

above the xy-plane for -1 S x S 1, -1 S y S l. 
Find the volume above the surface z x2 + y2 

and below the plane z = 2 for -1 S x S 1, 
-lSySl.

x 

40. Compute the integral

J .l (2x2 
+ y) dA,

where R is the triangular region with vertices at (0, 1), 
(-2, 3) and (2, 3). 

41. (a) Sketch the region in the xy-plane bounded by the
x-axis, y = x, and x + y = 1. 

(b) Express the integral of f(x, y) over this region in
terms of iterated integrals in two ways. (In one, use
dx dy; in the other, use dy dx.)

(c) Using one of your answers to part (b), evaluate the
integral exactly with f(x, y) = x.

42. Let f(x,y) = x2ex2 
and let R be the triangle bounded

by the lines x = 3, x = y /2, and y = x in the xy-plane.

(a) Express J
R 

f dA as a ,double integral in two differ­
ent ways.

(b) Evaluate one of them.

43. Find the average value of f(x, y) = x2 
+ 4y on the rect­

angle O S x S 3 and O S y S 6.

44. Find the average value of f(x, y) = xy2 on the rectangle
O S x S 4, 0 S y S 3.

In Problems 45--47 set up, but do not evaluate, an iterated in­
tegral for the volume of the solid. 

45. Under the graph of f(x, y) = 25 - x2 - y2 and above
the xy-plane.

46. Below the graph of f(x, y) = 25 - x2 - y2 and above
the plane z = 16.

47. The three-sided pyramid whose base is on the xy-plane
and whose three sides are the vertical planes y = 0 and
y - x = 4, and the slanted plane 2x + y + z = 4.

In Problems 48-53, find the volume of the solid region. 

48. Under the graph of f(x, y) = xy and above the square
O S x S 2, 0 S y S 2 in the xy-plane.

49. Under the graph of f(x, y) = x2 
+ y2 and above the

triangle OS y S x, 0 S x S 1.

50. Under.the graph of f(x, y) = x +y and above the region
y2 S x, 0 S x S 9, y 2 0.

51. Under the graph of 2x + y + z = 4 in the first octant.

52. The solid between the planes z = 3x + 2y + 1 and
z = x + y, and above the triangle with vertices (1, 0, 0),
(2, 2, 0), and (0, 1, 0) in the xy-plane. See Figure 16.21.

16.2 ITERATED INTEGRALS 883 

z=3x+2y+l z 

z=x+y 

Figure 16.21 

53. The solid region R bounded by the coordinate planes and
the graph of ax + by + cz = 1. Assume a, b, and c > 0.

54. If R is the region x + y 2 a, x2 
+ y2 S a2 , with a > 0,

evaluate the integral

( xydA. 
.JR 

55. The region W lies below the surface J(x, y)

2e-(x-l)
2 -Y

2 
and above the disk x2 

+ y2 S 4 in the
xy-plane.

(a) Describe in words the contours of f, using
f (x, y) = 1 as an example.

(b) Write an integral giving the area of the cross-section
of vV in the plane x = 1.

(c) Write an iterated double integral giving the volume
ofW.

56. Find the average distance to the x-axis for points in the
region bounded by the x-axis and the graph of y =

x - x2. 
-

57. Give the contour diagram of a function f whose average
value on the square O S x S 1, 0 S y S 1 is

(a) Greater than the average of the values off at the four
corners of the square.

(b) Less than the average of the values off at the four
corners of the square.

58. The function J(x, y) =ax+ by has an average value of
20 on the rectangle O S x S 2, 0 S y S 3.

(a) What can you say about the constants a and b?
(b) Find two different choices for f that have average

value 20 on the rectangle, and give their contour di­
agrams on the rectangle.

59. The function f(x, y) = ax2 
+ bxy + cy2 has an average

value of 20 on the square O S x S 2, 0 S y S 2.

(a) What can you say about the constants a, b, and c?
(b) Find two different choices for f that have average

value 20 on the square, and give their contour dia­
grams on the square.
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60. Show that for a right triangle the average distance from
any point in the triangle to one of the legs is one-third the
length of the other leg. (The legs of a right triangle are
the two sides that are not the hypotenuse.)

61. A rectangular plate of sides a and bis subjected to a nor­
mal force (that is, perpendicular to the plate). The pres­
sure, p, at any point on the plate is proportional to the
square of the distance of that point from one corner. Find
the total force on the plate. [Note that pressure is force
per unit area.]

62. Find the area of the crescent-moon shape with circular
arcs as edges and the dimensions shown in Figure 16.22.

Strengthen Your Understanding 

In Problems 63-64, explain what is wrong with the statement. 

63. J
0

1 J
0
"' f(x, y) dy dx = J

0

1 J; f(x, y) dx dy 
64. J

0

1 J; xy dx dy = f
0
Y f0

1 xy dy dx
In Problems 65-67, give an example of: 

65. An iterated double integral, with limits of integration,
giving the volume of a cylinder standing vertically with
a circular base in the xy-plane.

66. A nonconstant function, f, whose integral is 4 over the
triangular region with vertices (0, 0), (1, 0), (1, 1).

67. A double integral representing the volume of a triangular
prism of base area 6.

Are the statements in Problems 68-75 true or false? Give rea­
sons for your answer. 

68. The iterated integral ]�1 ft f dxdy is computed over the
rectangle O :::; x :::; 1, 5 :::; y :::; 12. 

69. If R is the region inside the triangle with vertices
(0, 0), (1, 1) and (0, 2), then the double integral j� f clA
can be evaluated by an iterated integral of the form

fo2 fo1 f clxdy.

16.3 TRIPLE INTEGRALS

l 
8" 

j
I 

I 

I 

I 

I 

I 

I 

I I 

I I I 

/.- 211 -J.- 211 -I 

Figure 16.22 

70. The region of integration of the iterated integral

J/ J:2
3 f dyclx lies completely in the first quadrant (that

is, x � 0, y � 0).

71. If the limits a, b, c and cl in the iterated inte­
gral f

0

b fed f clydx are all positive, then the value of

J: t fdydx is also positive.

72. If f(x, y) is a function of y only, then J: J
0

1 fdxdy =
1: fdy.

73. If R is the region inside a circle of radius a, centered at

the origin, then JR f dA = f�a j� a--x- fdydx.
74. If f(x,y) = g(x) · h(y), where g and hare single­

variable functions, then

l
b 1d f dydx = (l

b g(x) dx) · (1d h(y) dy) . 

75. If .f(x, y) = g(x) + h(y), where g and hare single­
variable functions, then

A continuous function of three variables can be integrated over a solid region Hl in 3-space in the 
same way as a function of two variables is integrated over a flat region in 2-space. Again, we start 
with a Riemann sum. First we subdivide Hl into smaller regions, then we multiply the volume of 
each region by a value of the function in that region, and then we add the results. For example, if Hl 
is the box a ::::; x ::::; b, c ::::; y ::::; d, p ::::; z ::::; q, then we subdivide each side into n, m, and l pieces,
thereby chopping HI into nml smaller boxes, as shown in Figure 16.23. 

Example1 

Solution 

16.3 TRIPLE INTEGRALS 885 

z 

q r--

p 

Figure 16.23: Subdividing a three-dimensional box 

The volume of each smaller box is 

6 V = t.xt.yt.z,

where t.x = (b - a)/n, and t.y = (d - c)/m, and t.z = (q - p)/l. Using this subdivision, we
pick a point ( Uijk, Vijk, Wijk) in the ij k-th small box and construct a Riemann sum 

L f ( Uijk) Vijk) Wijk) t. v.
i,j,k 

, . . 

If J is continuous, as t.x, 6.y, and t.z approach 0, this Riemann sum approaches the definite

integral, { f dV, called a triple integral, which is defined as
lw 

As in the case of a double integral, we can evaluate this integral as an iterated integral: 

Triple integral as an iterated integral 

Lf dV � { (t (l J(x,y,z)dx) dy) dz ,

where y and z are treated as constants in the innermost ( dx) integral, and z is treated as a 
constant in the middle ( dy) integral. Other orders of integration are possible. 

A cube C has sides of length 4 cm and is made of a material of variable density. If one corner is at 
the origin and the adjacent corners are on the positive x, y, and z axes, then the density at the point 
(x, y, z) is 8(x, y, z) = 1 + xyz gm!cm3

. Find the mass of the cube.

Consider a small piece t. V of the cube, small enough so that the density remains close to constant 
over the piece. Then 

Mass of small piece= Density· Volume� 8(x, y, z) 6 V.

To get the total mass, we add the masses of the small pieces and take the limit as 6. V --+ 0. Thus,

the mass is the triple integral 

M = { 8 dV = (4 (4 f\1 + xyz) dx dy dz= (
4 

(
4 (x + �x2

yz) 1
x=4 

dy dz 

le lo lo lo lo lo x=O 

= r
4 

[
4

(4+8yz) dy dz = [
4 

(4y+4y
2

z)\
y=4

dz= [
4

(16+64z)dz = 576gm.

lo lo lo y=O lo 

�I 

�! 
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Example2 

Solution 

(8, 0, 10) 
(8,0,8) 

Express the volume of the building described in Example 1 on page 876 as a triple integral. 

The building is given by O:::; x:::; 8, 0:::; y:::; 16, and O:::; z:::; 12 - x/4 -y/8. (See Figure 16.24.) 
To find its volume, divide it into small cubes of volume ll V = llx lly llz and add. First, make a 
vertical stack of cubes above the point (x, y, 0). This stack goes from z = 0 to z = 12 - x/4-y/8,
so 

Volume of vertical stack;:::;; L ll V = L llx lly llz = (:z= llz) llx lly.
z z z 

Next, line up these stacks parallel to the y-axis to form a slice from y = 0 toy = 16. So 

Volume of slice ;:::;; (:z= L llz lly) llx.
y z 

Finally, line up the slices along the x-axis from x = 0 to x = 8 and add up their volumes, to get 

Volume of building;:::;; LL L llz lly llx.
Thus, in the limit, 

z 

x y z 

{
8 

{
16 

r
1 2-x/4-y/8

Volume of building 
= } 0 } 0 } 0 

1 clz cly dx.

(x, y, 12 - ix - h)

I 
(8, 0, 10) -

y 

8 

x 

I 
I 

I 

I 

I 
I 

I 
I 

I 

z 

(0, 0, 12) 

-
-
-
-
-
-

// 
---.1-L.. I l::,,y -------../

I 

I 
I 

l::,,x 

16 

Figure 16.24: Volume of building (shown to left) divided into blocks and slabs for a triple integral 

Example3 Set up an iterated integral to compute the mass of the solid cone bounded by z = J x2 + y2 and 
z = 3, if the density is given by J(x, y, z) = z.

z 

-+------ z = 3 

x 

Figure 16.25 

y 

Solution 

16.3 TRIPLE INTEGRALS 887 

We break the cone in Figure 16.25 into small cubes of volume ll V = llx lly llz, on which the 
density is approximately constant, and approximate the mass of each cube by J ( x, y, z) llx lly llz.
Stacking the cubes vertically above the point ( x, y, 0), starting on the cone at height z = J x2 + y2 

.and going up to z = 3, tells us that the inner integral is 

13 
J(x, y, z) dz= 13 z dz. 

Jx2+y2 Jx2+y2 

There is a stack for every point in the xy-plane in the shadow of the cone. The cone z = J x2 + y2 

intersects the horizontal plane z = 3 in the circle x2 + y2 = 9, so there is a stack for all ( x, y) in the 
region x2 + y2 :::; 9. Lining up the stacks parallel to the y-axis gives a slice from y = -J9 - x2 to 
y = Jg - x2

, for each fixed value of x. Thus, the limits on the middle integral are 

1v'9=x21
3 

-v'9-x2 Jx2+y2 
zdz dy.

Finally, there is a slice for each x between -3 and 3, so the integral we want is 

,. 

1
3

1v'9=x21
3 

Mass= z dz dy dx. 
-3 -J9-x2 Jx2+y2

Notice that setting up the limits on the two outer integrals was just like setting up the limits for 
a double integral over the region x2 + y2 :::; 9. 

As the previous example illustrates, for a region Hi contained between two surfaces, the inner­
most limits correspond to these surfaces. The middle and outer limits ensure that we integrate over 
the "shadow" of W in the xy-plane. 

Limits on Triple Integrals 

• The limits for the outer integral are constants.
• The limits for the middle integral can involve only one variable (that in the outer integral).
• The limits for the inner integral can involve two variables (those on the two outer integrals).

Exercises and Problems for Section 16.3 

Exercises 

In Exercises 1-4, find the triple integrals of the function over 
the region W.

1. f(x, y, z) = x2 + 5y2 - z, HI is the rectangular box
0 :::; x :::; 2, -1 :::; y :::; 1, 2 :::; z :::; 3. 

2. h(x, y, z) = ax+ by+ cz, vV is the rectangular box
0 :::; x :::; 1, 0 :::; y :::; 1, 0 :::; z :::; 2. 

3. J(x,y,z) = sinxcos(y+z), Wis the cubeO:::; x:::; 1r, 

0 :::; y :::; 'Tr, 0 :::; z :::; 'Tr. 

4. J(x,y,z) = e-x-y-z, HI is the rectangular box with
corners at (0, 0, 0), (a, 0, 0), (0, b, 0), and (0, 0, c).

Sketch the region of integration in Exercises 5-13. 

5.1111 

1 Jl -x2 

f(x, y, z) dz dx dy
0 -1 0 

6.1
1

1
1

1� f(x,y,z)dyclzdx
0 -1 0 

1
1

1
1

1� 7. f(x, y, z) clz clx cly
0 - 1 -JJ-:,;2 
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8.f
1

1
1

f� f(x,y,z)dydzdx 
-1 0 -� 

9.

fl 
f 

J1-x2

1
J1-x2-z2 f(x,y,z)dydzdx

-1 -� 0 

l l f �
 
1

.Ji-x2-z2 

10. f(x, y, z) dy dx dz 
,0 -� 0 

Problems 

In Problems 14--18, decide whether the integrals are positive,
negative, or zero. Let S be the solid sphere x2 

+ y2 
+ z2 S 1,

and T be the top half of this sphere (with z 2 0), and B be
the bottom half (with z S 0), and R be the right half of the
sphere (with x 2 0), and L be the left half (with x S 0). 

14. l ezdV 15. j� ez dV 16, 1 sinzdV

17. l sinzdV 18. l sinzdV

Let W be the solid cone bounded by z = J x2 + y2 andz = 2. For Problems 19-27, decide (without calculating its
value) whether the integral is positive, negative, or zero. 

19. 

21. 

23. 

25.

IwydV 
IwzdV 
IwxyzdV 
Iw Jx2 +y2dV 

20. IwxdV
22. IwxydV
24. Iw(z - 2) dV
26. Iw e-xyz dV

27. Iw(z-Jx2 + y2) dV 
28. Find the volume of the region bounded by the planesz = 3y, z = y, y = 1, x = 1, and x = 2. 

29. Find the volume of the region bounded by z = x2
, 

O S x S 5, and the planes y = 0, y = 3, and z = 0. 

30. Find the volume of the region in the first octant bounded
by the coordinate planes and the surface x + y + z = 2.

31. A trough with triangular cross-section lies along the x­
axis for O S x S 10. The slanted sides are given byz = y and z = -y for O S z S 1 and the ends by x = 0
and x = 10, where x, y, z are in meters. The trough
contains a sludge whose density at the point (x, y, z) isi5 = e-3x kg per m3. 

(a) Express the total mass of sludge in the trough in
terms of triple integrals. 

(b) Find the mass. 

11.1
1 1�f

Ji-x2 -y2 f(x,y,z)dzdxdy
0 0 -J1-x2 -y2 

1 1 
;

·�f J
1-y2-z2 

12. f(x, y, z) dx dy dz 
0 -Ji-.::2 -J1-y2 -=2 

1 1 l�
J

·Jl-:,;2-z2 

13. f(x,y,z)dydxdz 
0 0 -Ji-x2-z2 

32. Find the volume of the region bounded by z = x+y, z =
10, and the planes x = 0, y = 0. 

In Problems 33-38, write a triple integral, including limits of
integration, that gives the specified volume. 

33.

34.

35.

Between z = x + y and z = 1 + 2x + 2y and above
OS x S 1, 0 Sy S 2. 
Between the paraboloid z = x2 

+ y2 and the sphere
x2 

+ y2 
+ z2 

= 4 and above the disk x2 
+ y2 S 1. 

Between 2x + 2y + z = 6 and 3x + 4y + z = 6 and
above x + y S 1, x 2 0, y 2 0. 

36. Under the sphere x2 
+ y2 

+ z2 = 9 and above the region
between y = x and y = 2x - 2 in the xy-plane in the
first quadrant. 

37. Between the top portion of the sphere x2 
+ y2 

+ z2 
= 9

and the plane z = 2. 
38. Under the sphere x2 

+ y2 
+ z2 

= 4 and above the regionx2 
+ y2 S 4, 0 S x S 1, 0 S y S 2 in the xy-plane. 

In Problems 39----42, write limits of integration for the integralIw f(x, y, z) dV where W is the quarter or half sphere or
cylinder shown.

39.

41.

x -­
r 

z 

z 40.

42.

y 

x 

z 

/r 

x 

r 
y

43. Find the volume of the region between the plane z = x

and the surface z = x2
, and the planes y = 0, and y = 3.

44. Find the volume of the region bounded by z = x + y,

O S x S 5, 0 S y S 5, and the planes x = 0, y = 0,
and z = 0. 

45. Find the volume of the pyramid with base in the plane
z = -6 and sides formed by the three planes y = 0 and
y - x = 4 and 2x + y + z = 4. 

46. Find the volume between the planes z = 1 + x + y andx + y + z = 1 and above the triangle x + y S 1, x 2 0,
y 2 0 in the xy-plane. 

47. Find the volume between the plane x + y + z = 1 and
the xy-plane, for x + y S 2, x 2 0, y 2 0. 

48. A solid shaped like a wedge of cheese has as its base the
xy-plane, bounded by the xLaxis, the line y = x and the
line x + y = 1. Its sides are vertical, and its top is the
plane x + y + z = 2. At any point, the density of the
solid is four times the distance from the xy-plane. 

(a) Express the mass of the region in terms of triple in­
tegrals. 

(b) Find the mass.

49. Find the mass of a triangular-shaped solid bounded by
the planes z = 1 + x, z = 1 - x, z = 0, and with
O S y S 3. The density is i5 = 10 - z gm/(cm)3, and
x, y, z are in cm. 

50. Find the mass of the solid bounded by the xy-plane, yz­
plane, xz-plane, and the plane (x/3) + (y/2) + (z/6) =
1, if the density of the solid is given by i5(x, y, z) = x+y.

51. Find the mass of the pyramid with base in the planez = -6 and sides formed by the three planes y = 0
and y - x = 4 and 2x + y + z = 4, if the density of the
solid is given by i5(x, y, z) = y.

52. Let E be the solid pyramid bounded by the planes x +z = 6, x - z = 0, y + z = 6, y - z = 0, and above the
plane z = 0 (see Figure 16.26). The density at any point
in the pyramid is given by i5(x, y, z) = z grams per cm3, 

where x, y, and z are measured in cm. 

(a) Explain in practical terms what the triple integral
IE 

z dV represents. 
(b) In evaluating the integral from part (a), how many

separate triple integrals would be required if we
chose to integrate in the z-direction first? 

(c) Evaluate the triple integral from part (a) by integrat­
ing in a well-chosen order. 
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z 

y 

x 

Figure 16.26 

53. (a) What is the equation of the plane passing through
the points (1, 0, 0), (0, 1, 0), and (0, 0, 1)? 

(b) Find the volume of the region bounded by this plane
and the planes x = 0, y = 0, and z = 0. 

Problems 54--56 refer to Figure 16.27, which shows triangular
portions of the planes 2x + 4y + z = 4, 3x - 2y = 0, z = 2,
and the three coordinate planes x = 0, y = 0, and z = 0.
For each solid region E, write down an iterated integral for
the triple integral IE 

f(x, y, z) dV. 

z 

x y 

Figure 16.27 

54. E is the region bounded by y = 0, z = 0, 3x - 2y = 0,
and 2x + 4y + z = 4. 

55. E is the region bounded by x = 0, y = 0, z = 0, z = 2,
and 2x + 4y + z = 4. 

56. E is the region bounded by x = 0, z = 0, 3x - 2y = 0,
and 2x + 4y + z = 4. 

57. Figure 16.28 shows part of a spherical ball of radius 5 cm.
Write an iterated triple integral which represents the vol­
ume of this region. 

Figure 16.28 
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58. A solid region D is a half cylinder of radius I lying hori­
zontally with its rectangular base in the xy-plane and its
axis along the y-axis from y = 0 to y = 10. (The region
is above the xy-plane.)

(a) What is the equation of the curved surface of this
half cylinder?

(b) Write the limits of integration of the integral
J

D 
f(x, y, z) dV in Cartesian coordinates.

59. Set up, but do not evaluate, an iterated integral for the
volume of the solid formed by the intersections of the
cylinders x2 + z2 

= 1 and y2 + z2 
= 1.

Problems 60-62 refer to Figure 16.29, which shows E, the 
region in the first octant bounded by the parabolic cylinder 
z = 6y2 and the elliptical cylinder x2 + 3y2 

= 12. For the 
given order of integration, write an iterated integral equivalent 
to the triple integral J

E 
f(x, y, z) dV. 

z 

y 

x 

Figure 16.29 

60. dzdx dy 61. dx dzdy 62. dy dzdx

63. Find the average value of the sum of the squares of three
numbers x, y, z, where each number is between O and 2.

64. Let E be the region in the first octant bounded between
the plane x + 2y + z = 4, the parabolic cylinder
x = 2y2 , and the coordinate planes (see Figure 16.30). 
For each of the following orders of integration, write 
down an iterated integral equivalent to the triple integral 
J

E 
f(x, y, z) dV. 

(a) dz dy dx
(b) dy dz dx

z 

y 

x 

Figure 16.30 

Problems 65-66 concern the center of mass, the point at which 
the mass of a solid body in motion can be considered to 
be concentrated. If the object has density p(x, y, z) at the 
point (x, y, z) and occupies a region l,V, then the coordinates 
(x, fi, z) of the center of mass are given by 

- 1
1 - 1;

· 11 X= - xpdV y= - ypdV z= - zpdV 
m w m w m w

where m = fw p dV is the total mass of the body.

65. A solid is bounded below by the square z = 0, 0 s; x s;
1, 0 s; y s; 1 and above by the surface z = x + y + 1.
Find the total mass and the coordinates of the center of
mass if the density is 1 gm/cm3 and x, y, z are measured
in centimeters.

66. Find the center of mass of the tetrahedron that is bounded
by the xy, yz, xz planes and the plane x + 2y + 3z = 1.
Assume the density is I gm/cm3 and x ,  y, z are in cen­
timeters.

Problems 67-69 concern a rotating solid body and its 1110111e11t

of inertia about an axis; this moment relates angular acceler­
ation to torque (an analogue of force). For a body of constant 
density and mass m occupying a region lV of volume V, the 
moments of inertia about the coordinate axes are 

rn 1 2 2 Ix = 

V (y + z ) dV 
w 

in j 2 2 
lz = 

V
(x + y ) dV. 

w 

in 1 2 2 
ly 

= 

V 
(x + z ) dV 

w 

67. Find the moment of inertia about the z-axis of the rectan­
gular solid of mass m given by O s; x s; 1, 0 s; y s; 2,
O s; z s; 3.

68. Find the moment of inertia about the x-axis of the rectan­
gular solid -a s; x s; a, -b s; y s; b and -c s; z s; c
of mass m.

69. Let a, b, and c denote the moments of inertia of a homo­
geneous solid object about the x, y and z-axes respec­
tively. Explain why a+ b > c.
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Strengthen Your Understanding 

In Problems 70-71, explain what is wrong with the statement. 76. If H' is the entire unit ball x2 + y
2 + 22 s;

70. 

71. 

1 then an iterated integral over W has limits 
Let S be the solid sphere x2 

+ y2 
+ z

2 s; 1 and let Ube f1 fVl -x2 fVl -x2-y2 
the upper half of S where z 2'. 0. Then Jo Jo Jo 

f dz dy dx. 
J f(x y z) dV = 2 f f(x y z) dV 77 Th . d . I fl fl-x fl -x-y f d d d s ' ' Ju ' ' · • e iterate mtegra s Jo Jo Jo 

z y x and 

f0

1 
J�" J; J(x, y, z) dz dy dx = J0

1 fv1 fox f(x, Y, z) dz dx dy f0
1 Jt 2 Jty-z f dxdydz are equal.

2 

In Problems 72-73, give an example of: 78. The iterated integrals f� 1 J0

1 
f0

1-x f dzdydx and

72. A function f such that J
R 

fdV = 7, where R is the
cylinder x2 

+ y
2 s; 4, 0 s; z s; 3.

73. A nonconstant function f(x, y, z) such that if B is the
region enclosed by the sphere of radius 1 centered at the
origin, the integral f 8 f(x, y, z) dx dy dz is zero.

Are the statements in Problems 74--83 true or false? Give rea­
sons for your answer. 

74. If p(x, y, z) is mass density of a material in 3-space, then
fw p(x, y, z) dV gives the volume of the solid region
lV.

75. The region of integration of the triple iterated integral
J

0

1 

J
0

1 J�" f dzdydx lies above a square in the xy-plane
and below a plane.

fl fl Jvr=-z 
Jo Jo -vr=-z f dxdydz are equal.

79. If l,V is a rectangular solid in 3-space, then fw f dV =
J,b J,d J,k 

a c e f dz dy dx, where a, b, c, d, e, and k are con-
stants.

80. If Wis the unit cube O s; x s; 1, 0 s; y s; 1, 0 s; z s; 1
and J f dV = 0, then f = 0 everywhere in the unitw
cube.

81. If f > g at all points in the solid region W, then

fw f dV > fw g dV.
82. If l1Vi and H'2 are solid regions with volume(W1) > .

volume(vV2) then fw
1 

f dV > fw2 
f dV.

83. Both double and triple integrals can be used to compute
volume.

16.4 DOUBLE INTEGRALS IN POLAR COORDINATES

Integration in Polar Coordinates 

Example1 

We started this chapter by putting a rectangular grid on the fox population density map, to estimate 

the total population u_sing a Riemann sum. However, sometimes a polar grid is more appropriate. 

A biologist studying insect populations around a circular lake divides the area into the polar sectors 

in Figure 16.31. The approximate population density in each sector is shown in millions per square 

km. Estimate the total insect population around the lake. 

Shore of the lake 

Figure 16.31: An insect-infested lake showing the insect population density by sector 
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y 

To get the estimate, we multiply the population density in each sector by the area of that sector. 
Unlike the rectangles in a rectangular grid, the sectors in this grid do not all have the same area. The 
inner sectors have area 

and the outer sectors have area 

so we estimate 

1
2 2 51r 

2 -(1r3 - 1r2 ) = - � 3.93 km 
4 4 

' 

1 2 2 71r 
2 -(1r4 - 1r3 ) = -� 5.50 km 

4 4 
' 

Population� (20)(3.93) + (17)(3.93) + (14)(3.93) + (17)(3.93) +
(13)(5.50) + (10)(5.50) + (8)(5.50) + (10)(5.50) 

= 492.74 million insects. 

What Is dA in Polar Coordinates?

The previous example used a polar grid rather than a rectangular grid. A rectangular grid is con­
structed from vertical and horizontal lines of the form x = k (a constant) and y = l (another 
constant). In polar coordinates, r = k gives a circle of radius k centered at the origin and B = l 
gives a ray emanating from the origin (at angle l with the x-axis). A polar grid is built out of these 
circles and rays. Suppose we want to integrate f (r, B) over the region R in Figure 16.32. 

(}n = (3 Y 

ea = a 

x 

Arc of circle 
of radius r 

x 

Figure 16.32: Dividing up a region using a polar grid Figure 16.33: Calculating area 6A in polar coordinates

Choosing (1'ij, Bij) in the ij-th bent rectangle in Figure 16.32 gives a Riemann sum: 

I:, 1 (1'ij, eij) t:i.A. 
i,j 

To calculate the area t:i.A, look at Figure 16.33. If t:i.r and t:i.B are small, the shaded region is 
approximately a rectangle with sides r t:i.e and t:i.r, so 

t:i. A  � rt:i.Bt:i.r. 
Thus, the Riemann sum is approximately 

I:, 1 (rij, eij) 1\j t:i.e t:i.r. 
i,j 

If we take the limit as t:i.r and t:i.e approach 0, we obtain 

{ fdA = 1f3 1
b f(r,B)rdrdB. 

JR o: a 

When computing integrals in polar coordinates, use x = r cos e, y = r sine, x2 + y2 = r2 . PutdA = rdrdBordA = rdBdr. 

Example2 

Solution 

Example3 

(a) y
2 

1 

-1

Solution 

16.4 DOUBLE INTEGRALS IN POLAR COORDINATES 

Compute the integral of f(x, y) = 1/(x2 + y2 ) 312 over the region R shown in Figure 16.34. 
y 

1 2 

Figure 16.34: Integrate f over the polar region 

893 

The region R is described by the inequalities 1 < r < 2, 0 < B ::=; 1r / 4. In polar coordinates, 
r = Jx2 + y2

, so we can write fas 

Then /• 

1 
f(x, Y) = 

(x2 + y2 )3/2 

1 

(r2 )3/2 

1 

r3' 

For each region in Figure 16.35, decide whether to integrate using polar or Cartesian coordinates. 
On the basis of its shape, write an iterated integral of an arbitrary function f ( x, y) over the region. 

x 
1 3 

(b) l (c) Y (d) y 
I 3 I 2 

2 

-3
x 1 1 

x 
2 

-1 x 
-3

-2 -1

Figure 16.35 

(a) Since this is a rectangular region, Cartesian coordinates are likely to be a better choice. The
rectangle is described by the inequalities 1 ::=; x ::=; 3 and -1 ::=; y ::=; 2, so the integral is

f 
2 

!
3 f (x, y) clx dy. 

-1 1 

(b) A circle is best described in polar coordinates. The radius is 3, so r goes from O to 3, and to
describe the whole circle, e goes from Oto 21r. The integral is

fo
2

-rr 1
3 f(rcosB,rsinB)rclrdB.

(c) The bottom boundary of this trapezoid is the line y = (x/2) - 1 and the top is the line y = 3,
so we use Cartesian coordinates. If we integrate with respect to y first, the lower limit of the
integral is (x/2) - 1 and the upper limit is 3. The x limits are x = 0 to x = 2. So the integral is

f
2 J3 f(x,y)dydx. 

Jo (x/2)-1 

I 

•• 

�·
I 
,·

�,-
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(d) This is another polar region: it is a piece of a ring in which r goes from 1 to 2. Since it is in the
second quadrant, B goes from 1r /2 to 1r. The integral is 

1
1r

f 
2 

f (r cos B, r sin B) r dr dB.
1r /

2 
1 

Exercises and Problems for Section 16.4 

Exercises 

For the regions R in Exercises 1-4, write J
R 

J dA as an iter­
ated integral in polar coordinates. 

1. y 2. 
0.5 

LJ x 
0.5 -vl2

3.
2y

4. y 

1 

x 

-1 1 

In Exercises 5-8, choose rectangular or polar coordinates to 
set up an iterated integral of an arbitrary function f(x, y) over
the region. 

5. y 6. y

4 5, 

2 -5 

x -5 
5 

Problems 

In Exercises 16-18, evaluate the integral. 

16. J
R 

Jx2 + y2 clxdy where R is 4:::; x2 + y2 :::; 
9.

17. J
R 

sin(x2 + y2) clA, where R is the disk of radius 2 cen­
tered at the origin. 

18. J
R

(x2 - y2) dA, where R is the first quadrant region
between the circles of radius I and radius 2. 

7. -4 -2 y 2 4 8. y 

w· 

Sketch the region of integration in Exercises 9-15. 

9. 

10. 

11. 

12. 

141
1r/2 

0 -rr/2 
f(r, B) r cl() dr

1
"' 

j
1

J(r, B)rdrd()
7r /2 0 

1
27' 12 

0 1 
f(r,B)rdrdB 

1-;r/311rr/6 0 

f(r, B) r dr cl() 

1-rr
/

41
1/ cos e 

13. 
0 0 

f(r,B)rdrd() 

14.1
4

1
31r/2 

J(r,B)rdBdr 
3 3-rr/4 

lr./2
1

2/sinO 
15. J(r,B)rdrdB

1r/4 0 

2 

Convert the integrals in Problems 19-21 to polar coordinates
and evaluate. 

19. 101� x dydx
-1 -JJ-:,;2 

1\1'21� 21. xydx cly
O y 

20. 1v'61x0 -x 
dydx

22. Consider the integral j�3 fx
1
/3 f(x , y) dy dx.

(a) Sketch the region Rover which the integration is be­
ing performed. 

(b) Rewrite the integral with the order of integration re­
versed. 

(c) Rewrite the integral in polar coordinates.

23. (a) Use integration in the following coordinates to find
the volume of a solid orange wedge with x 2 0 and 
cut out by the planes y = 0, y = x / v'3, and a sphere 
of radius 5 centered at the origin. Which coordinates
are the most efficient? 

(i) Spherical coordinates
(ii) Cylindrical coordinates, in two different ways

(b) Calculate the volume without integration

24. Evaluate the integral by converting it into Cartesian co­
ordinates: 

1
-rr/6

1
2/cose 

0 0 I 

rdrdB. 

25. (a) Sketch the region of integration of

1
1

!� 1
2

1� x dy dx + x dy clx
O J1-x2 1 0 

(b) Evaluate the quantity in part (a).

26. Find the volume of the region between the graph of
J(x , y) = 25 - x2 - y2 and the xy plane. 

27. Find the volume of an ice cream cone bounded by the
hemisphere z = J8 - x2 - y2 and the cone z =

Jx2 + y2. 

28. (a) For a > 0, find the volume under the graph of
z = e-(,:

2

+y
2

) above the disk x2 + y2 :::; a2. 

(b) What happens to the volume as a -+ oo? 

29. A circular metal disk of radius 3 lies in the xy-plane with 
its center at the origin. At a distance r from the origin, the

. f . . r 1 density o the metal per umt area 1s u = -
2
--.

r + 1 
(a) Write a double integral giving the total mass of the

disk. Include limits of integration. 
(b) Evaluate the integral.

30. A city sun-ounds a bay as shown in Figure 16.36. The
population density of the city (in thousands of people per
square km) is o(r, B), where rand() are polar coordinates
and distances are in km. 

(a) Set up an iterated integral in polar coordinates giving
the total population of the city. 

Strengthen Your Understanding 

In Problems 37-38, explain what is wrong with the statement. 

37. If R is the region bounded by x = 1, y = 0, y = x, then
in polar coordinates J

R 
x dA = J

0

1r 14 f
0

1 r2 cos() dr d().
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(b) The population density decreases the farther you live
from the shoreline of the bay; it also decreases the
farther you live from the ocean. Which of the fol­
lowing functions best describes this situation? 

(i) o(r,B) = (4-r)(2 + cosB) 
(ii) o(r,B) = (4-r)(2+sinB)

(iii) rS(r, B) = (r + 4)(2 + cos B)

(c) Estimate the population using your answers to
parts (a) and (b). 

y(km) 
4 

Ocean 

Bay 

Figure 16.36 

x(km) 

31. A disk of radius 5 cm has density LO gm/cm2 at its center
and density Oat its edge, and its density is a linear func­
tion of the distance from the center. Find the mass of the
disk. 

32. Electric charge is distributed over the xy-plane, with den­
sity inversely proportional to the distance from the ori­
gin. Show that the total charge inside a circle of radius
R centered at the origin is proportional to R. What is the
constant of proportionality? 

33. (a) Graph r = 1/(2cosB) for -1r/2 :S () :S 1r/2 and
r = 1. 

(b) Write an iterated integral representing the area inside 
the curve r = 1 and to the right of r = 1/(2 cos B).
Evaluate the integral. 

34. (a) Sketch the circles r = 2 cos() for -1r /2 :S () :S 1r /2 
and r = 1. 

(b) Write an iterated integral representing the area inside 
the circle r = 2 cos() and outside the circle r = 1. 
Evaluate the integral. 

35. Two circular disks, each of radius l, have centers which
are 1 unit apart. Write, but do not evaluate, a double in­
tegral, including limits of integration, giving tlie area of
overlap of the disks in 

(a) Cartesian coordinates (b) Polar coordinates

36. Find the area inside the curve r = 2 + 3 cos() and outside
the circler = 2. 

38. If R is the region x2 + y2 :S 4, then J
R

(x2 + y2) dA =
fo

2

1r fo
2 r2 dr dB.
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In Problems 39--40, give an example of: 

111� 
39. A region R of integration in the first quadrant which sug­

gests the use of polar coordinates.

40. An integrand f(x, y) that suggests the use of polar coor­
dinates.

(a) 
-l -Ji-x2 

dy dx (b)

41. Which of the following integrals give the area of the unit 42. Describe the region of integration for J: /4
2 J1;s:�

n

: f (r, B)r dr dB. 
circle? 

16.5 INTEGRALS IN CYLINDRICAL AND SPHERICAL COORDINATES

Some double integrals are easier to evaluate in polar, rather than Cartesian, coordinates. Similarly, 
some triple integrals are easier in non-Cartesian coordinates. 

Cylindrical Coordinates 

The cylindrical coordinates of a point (x, y, z) in 3-space are obtained by representing the x and y
coordinates in polar coordinates and letting the z-coordinate be the z-coordinate of the Cartesian 
coordinate system. (See Figure 16.37 .) 

Relation Between Cartesian and Cylindrical Coordinates 

Each point in 3-space is represented using O :S r < oo, 0 :S 8 :S 21r, -oo < z < oo. 

x = rcose, 

y = rsine, 

z = z. 

As with polar coordinates in the plane, note that x2 
+ y2 = r2

. 

x 

z 

p = (r, e, z) 

' 
I 
I 
I Z 

I 

re�'�,-,�-r��+:�- y 
' I 

', I 
', I 
'• 

(r,B,O) 

Figure 16.37: Cylindrical 
coordinates: ( r, e, z)

A useful way to visualize cylindrical coordinates is to sketch the surfaces obtained by setting 
one of the coordinates equal to a constant. See Figures 16.38-16.40. 

r=2 

x 

x 

e- 21:. 
- 4 

z 
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z=3 

y 

x 

Figure 16.38: The surfaces r = 1 and. 
r=2 

Figure 16.39: The surfaces e = 1r/4 and 
e = 31r/4 

Figure 16.40: The surfaces z = -1 
and z = 3 

Example1 

Solution 

Setting r = c (where c is constant) gives a cylinder around the z-axis whose radius is c. Setting 
e = c gives a half-plane perpendicular to the xy plane, with one edge along the z-axis, making an 
angle c with the x-axis. Setting z = c gives a horizontal plane f ci units from the xy-plane. We call 
these fundamental swfaces.

The regioqs that can most easily be described in cylindrical coordinates are those regions whose 
boundaries are such fundamental surfaces. (For example, vertical cylinders, or wedge-shaped parts 
of vertical cylinders.) 

Describe in cylindrical coordinates a wedge of cheese cut from a cylinder 4 cm high and 6 cm in 
radius; this wedge subtends an angle of 1r /6 at the center. (See Figure 16.41.) 

The wedge is described by the inequalities O :S r :S 6, and O :S z :S 4, and O :S e :S 1r /6. 
z 

y 

Figure 16.41: A wedge of cheese 

Integration in Cylindrical Coordinates 

To integrate in polar coordinates, we had to express the area element dA in terms of polar coordi­
nates: dA = r dr dB. To evaluate a triple integral fw f dV in cylindrical coordinates, we need to 
express the volume element dV in cylindrical coordinates. 

In Figure 16.42, consider the volume element Li V bounded by fundamental surfaces. The area 
of the base is 6.A Rj r6.r6.8. Since the height is Liz, the volume element is given approximately 
by Liv Rj r Lir Lie Liz.

When computing integrals in cylindrical coordinates, put dV = r dr dB dz. Other orders of 
integration are also possible. 
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Example2 

Solution 

Example3 

Solution 

z 

x 

r6.(} 6.r 
�� 

�1m:L�v 
�T, I : I I 
I I I I 
I I I 
I : I I z 
I I I I 
I I I I 
I I I I 

y 

Figure 16.42: Volume element in cylindrical coordinates 

Find the mass of the wedge of cheese in Example 1, if its density is 1.2 grams/cm3. 

If the wedge is W, its mass is 

In cylindrical coordinates this integral is 

r 1.2 dv.
lw 

r
4 

r/6 r
6 

r
4 

r/6 f 6 r
4 

r/
6 

la lo la 
1.2 r dr df) dz= 

la la 
0.6r2 /B dz = 21.6 

la la 
df) dz

= 21.6 GD 4 = 45.239 grams. 

A water tank in the shape of a hemisphere has radius a; its base is its plane face. Find the volume, 
V, of water in the tank as a function of h, the depth of the water. 

In Cartesian coordinates, a sphere of radius a has the equation x2 +y2 + z2 = a2 . (See Figure 16.43.) 
In cylindrical coordinates, r2 = x2 + y2 , so this becomes 

r2 + z2 = a2.

Thus, if we want to describe the amount of water in the tank in cylindrical coordinates, we let r go
from Oto va2 - z2 , we let fJ go from Oto 21r, and we let z go from Oto h, giving

Volume = ( clV = (21r (" ('Ja 2 -z2 

rdrdzclfJ = (21r 

(
'1 r2 1r=va 2 -z2 

dzdfJ
of water lw lo lo lo lo lo 2 

r=O 

= -(a2 -z2)clzclfJ= - a2z-:_ elf)1271'

1" 1 127r 1 ( 3
) 
r z=h 

0 0 2 0 2 3 z=O 

= fo
27r � ( a2 h - �

3
) dfJ = 1f ( (l 2 h - ';

3
) . 

z 

r2 + z2 
= a2 

x 

Figure 16.43: Hemispherical water tank with radius a and water of depth h 
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Spherical Coordinates 

In Figure 16.44, the point P has coordinates (x, y, z) in the Cartesian coordinate system. We define
spherical coordinates p, ¢, and fJ for P as follows: p = J x2 + y2 + z2 is the distance of P from
the origin; ¢ is the angle between the positive z-axis and the line through the origin and the point
P; and fJ is the same as in cylindrical coordinates.

z 

x 

(} 
'
, 
' 

P=(x,y,z) 

', r 
' 
' ', I 
,. 

(x,y, 0) 

y 

!' Figure 16.44: Spherical coordinates: (p, ¢, 6) 

In cylindrical coordinates, 

x = r cos fJ, and y = r sin fJ, and z = z.
From Figure 16.44 we have z = p cos <p and r = p sin¢, giving the following relationship: 

Relation Between Cartesian and Spherical Coordinates 

Each point in 3-space is represented using O � p < oo, 0 � <p � 1r, and O � fJ � 21r.

Also, p2 = x2 + y2 + z2 . 

x = p sin <p cos fJ
y = p sin <p sin fJ
z = p cos¢.

This system of coordinates is useful when there is spherical symmetry with respect to the ori­
gin, either in the region of integration or in the integrand. The fundamental surfaces in spherical
coordinates are p = k (a constant), which is a sphere of radius k centered at the origin, fJ = k (a
constant), which is the half-plane with its edge along the z-axis, and <p = k (a constant), which is a
cone if k -j. 1r /2 and the xy-plane if k = 1r /2. (See Figures 16.45-16.47.) 

z z z 

¢ = 7f /6 

--- y 
x 

x 
y ¢=21r/3 

Figure 16.45: The surfaces p = 1 and 
p=2 

Figure 16.46: The surfaces 
e = 1r / 4 and e = 31r / 4 

Figure 16.47: The surfaces¢= 1r/6 and 
¢=21r/3 
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Integration in Spherical Coordinates 

Example4 

Solution 

Examples 

Solution 

To use spherical coordinates in triple integrals we need to express the volume element, dV, in 
spherical coordinates. From Figure 16.48, we see that the volume element can be approximated by 
a box with curved edges. One edge has length 6.p. The edge paralJel to the xy-plane is an arc of 
a circle made from rotating the cylindrical radius r (= psin¢) through an angle 6.e, and so has 
length p sin¢ 6.e. The remaining edge comes from rotating the radius p through an angle 6.¢, and 
so has length p 6.¢. Therefore, !:::,._ V Rj 6.p(p 6.¢) (p sin¢ 6.e) = p2 sin¢ 6.p 6.¢ 6.e.

Thus, 

x 

,.,.,,,_-=-�-�-�-���� y 

() -----£:,.&-

Figure 16.48: Volume element in spherical coordinates 

When computing integrals in spherical coordinates, put dV = p2 sin¢ dp d¢ de. Other orders 
of integration are also possible. 

Use spherical coordinates to derive the formula for the volume of a ball of radius a.

In spherical coordinates, a ball of radius a is described by the inequalities O ::=; p::; a, 0::; e ::=; 21r,
and O :::; ¢ :::; 1r. Note that e goes from Oto 21r, whereas¢ goes from Oto 1r. We find the volume by
integrating the constant density function 1 over the ball: 

Volume = ( 1 dV = f
21r 

r r p2 sin¢ dp d¢ de = f
21r 

r !a3 sin¢ d¢ de
l R lo lo lo lo lo 3

= -a3 
- cos¢ de= -a3 de=--. 

1 12,r 
1
1r 2 127r 41ra3 

3 0 0 3 0 3 

Find the magnitude of the gravitational force exerted by a solid hemisphere of radius a and constant 
density o on a unit mass located at the center of the base of the hemisphere. 

Assume the base of the hemisphere rests on the xy-plane with center at the 01igin. (See Fig­
ure 16.49.) Newton's law of gravitation says that the force between two masses m1 and m2 at a 
distance r apart is F = Gm1 m2/r2 , where G is the gravitation constant. 

In this example, symmetry shows that the net component of the force on the particle at the 
01igin due to the hemisphere is in the z direction only. Any force in the x or y direction from some 
part of the hemisphere is canceled by the force from another part of the hemisphere directly opposite 
the first. 

To compute the net z-component �f the gravitational force, we imagine a small piece of the 
hemisphere with volume!:::,._ V, located at spherical coordinates (p, e, ¢).This piece has mass 06. V, 
and exerts a force of magnitude F on the unit mass at the origin. The z-component of this force 
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is given by its projection onto the z-axis, which can be seen from the figure to be F cos¢. The 
distance from the mass 06. V to the unit mass at the origin is the spherical coordinate p. Therefore, 
the z-component of the force due to the small piece !:::,._ V is 

z-component
of force

G(o6. V)(l) =
2 

cos¢. 
p 

Adding the contributions of the small pieces, we get a vertical force with magnitude 

F = f
2

1r r
12 
r (

Gt) (cos¢)p2 sin¢dpd¢de = f
21r 

r
12 

Go(cos¢ sin¢)p1
p

=a 

d¢de 
lo lo lo P lo lo p=O 

r21r r /2 r21r 

( 
(cos¢ )2 )

I 
¢=1r /2

de = lo lo 
Goacos¢ sin¢d¢de = 

lo 
Goa

2 ¢=o 

= fo
21r 

Goa ( �) de = Goa1r. 

The integral in this example is improper because the region of integration contains the origin, where 
the force is un'defined. However, it can be shown that the result is nevertheless correct. 

z 

Unit mass x 

Figure 16.49: Gravitational force of hemisphere on mass at origin 

Exercises and Problems for Section 16.5 

Exercises 

1. Match the equations in (a)-(f) with one of the surfaces in
(I)-(VII).
(a) x = 5
(d) z = 1

(b) x2 +z2 =7(c) p=5 

(e) r = 3 (f) () = 21r

(I) Cylinder, centered on x-axis.
(II) Cylinder, centered on y-axis.

(III) Cylinder, centered on z-axis.
(IV) Plane, perpendicular to the x-axis.
(V) Plane, perpendicular to the y-axis.

(VI) Plane, perpendicular to the z-axis.
(VII) Sphere.

In Exercises 2-7, find an equation for the surface. 

2. The vertical plane y = x in cylindrical coordinates.

4. The cone z = J x2 + y2 in cylindrical coordinates.

5. The cone z = J x2 + y2 in spherical coordinates.

6. The plane z = 10 in spherical coordinates.

7. The plane z = 4 in spherical coordinates.

In Exercises 8-9, evaluate the triple integrals in cylindrical 
coordinates over the region HI.

8. f(x, y, z) = sin(x2 
+ y

2
), Wis the solid cylinder with

height 4 and with base of radius I centered on the z axis
at z = -1.

3. The top half of the sphere x2 
+ y

2 
+ z

2 = 1 in cylindrical
coordinates. 

9. f(x, y, z) = x2 
+ y

2 
+ z2

, Wis the region O ::=; r ::=; 4, 
1r I 4 ::; e ::; 31r / 4, -1 ::; z ::; 1.
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In Exercises I 0-11, evaluate the triple integrals in spherical 
coordinates. 

10. J(p,B,ef>) = sinef>, over the region O ::=:; (} ::=:; 21r,
OS ef> S 1r/4, 1 Sp S 2.

11. f(x, y, z) = 1/(x2 + y2 + z2 ) 1 l2 over the bottom half
of the sphere of radius 5 centered at the origin.

For Exercises 12-18, choose coordinates and set up a triple 
integral, including limits of integration, for a density function 
f over the region. 

12. 13. 

5 

14. 15. 
rr/2 

2 

Problems 

19. Write a triple integral in cylindrical coordinates giving
the volume of a sphere of radius J( centered at the ori­
gin. Use the order dz dr dB .

20. Write a triple integral in spherical coordinates giving the
volume of a sphere of radius J( centered at the origin.
Use the order d(} dp def>.

If Wis the region in Figure 16.50, what are the limits of inte­
gration in Exercises 21-23? 

Figure 16.50: Cone with flat top, 
symmetric about z-axis 

16. A piece of a sphere; angle at the center is 1r /3.

17. 

18. 

21.1

7

1

7

1

7 
f(r, B , z)rdzdrdB 

22. 1

7

1

7

1

7 

g(p, ¢>, B)p2 sin ef> dp def> d(} 

23.1

7

1

7

1

7 

h(x,y, z)dzdydx 

For the regions TV shown in Problems 24-26, write the limits 
of integration for r dV in the following coordinates: 

Jw 
(a) Cartesian (b) Cylindrical (c) Spherical

24. z 

-1

1 y 

One-eighth sphere 
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25. 

26 . 

z 

'C • 
Cone, topped by sphere 

of radius 1 centered at origin, 90° at vertex 

z 

�y 
Cone, flat on top, 
1r /2 at vertex

27. Write a triple integral representing the volume above the
cone z = J x2 + y2 and below the sphere of radius 2
centered at the origin. Include limits of integration but do
not evaluate. Use:

(a) Cylindrical coordinates
(b) Spherical coordinates

28. Write a triple integral representing the volume of the re­
gion between spheres of radius 1 and 2, both centered at
the origin. Include limits of integration but do not evalu­
ate. Use:

(a) Spherical coordinates.
(b) Cylindrical coordinates. Write your answer as the

difference of two integrals.

In Problems 29-34, write a triple integral including limits of 
integration that gives the specified volume. 

29. Under p = 3 and above ef> = 1r /3.
30. Under p = 3 and above z = r.
31. The region between z = 5 and z = 10, with 2 ::=:;

x2 + y2 ::=:; 3 and O ::=:; (} ::=:; 1r.
32. Between the cone z = J x2 + y2 and the first quadrant

of the xy-plane, with x2 + y2 ::=:; 7. 
33. The cap of the solid sphere x2 + y2 + z2 ::=:; 10 cut off by

the plane z = 1.
34. Below the cone z = r, above the xy-plane, and inside

the sphere x2 + y2 + z2 
= 8.

35. (a) Write an integral (including limits of integration)
representing the volume of the region inside the cone 
z = J3(x2 + y2 ) and below the plane z = 1. 

(b) Evaluate the integral.

36. Find the volume between the cone z = J x2 + y2 and
the plane z = 10 + x above the disk x2 + y2 ::=:; 1.

37. Find the volume between the cone x = Jy2 + z2 and
the sphere x2 + y2 + z2 

= 4.

38. The sphere of radius 2 centered at the origin is sliced hor­
izontally at z = 1. What is the volume of the cap above
the plane z = 1?

39. Suppose W is the region outside the cylinder x2 +y2 
= 1

and inside the sphere x2 + y2 + z2 
= 2. Calculate

40. Write a triple integral representing the volume of a slice
of the cylindrical cake of height 2 and radius 5 between
the planes(} = 1r /6 and(} = rr /3. Evaluate this integral.

41. Write a triple integral representing the volume of the
cone in Figure 16.51 and evaluate it.

�� 

- -- ---, - ----- ---�

.__5/v'2cm­

Figure 16.51 

Without performing the integration, decide whether each of 
the integrals in Problems 42-43 is positive, negative, or zero. 
Give reasons for your decision. 

42. W1 is the unit ball, x2 + y2 + z2 ::=:; 1.

(a) fw
1 

sin ef> dV (b) fw1 

cos¢ dV

43. W2 is O ::=:; z ::=:; J1 -x2 - y2 , the top half of the unit
ball.

(a) fw
2 

(z2 - z) dV (b) fw
2 

(-xz)-dV 

44. The insulation surrounding a pipe of length l is the re­
gion between two cylinders with the same axis. The in­
ner cylinder has radius a, the outer radius of the pipe,
and the insulation has thickness h. Write a triple integral,
including limits of integration, giving the volume of the
insulation. Evaluate the integral.

45. Assume p, q, r are positive constants. Find the volume
contained between the coordinate planes and the plane

x y z -+-+-=1.
p q r 



, 
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46. A cone stands with its flat base on a table. The cone's
circular base has radius a; the vertex (tip) is at a height
of h above the center of the base. Write a triple integral,
including limits of integration, representing the volume
of the cone. Evaluate the integral.

47. A half-melon is approximated by the region between two
concentric spheres, one of radius a and the other of radius
b, with O < a < b. Write a triple integral, including lim­
its of integration, giving the volume of the half-melon.
Evaluate the integral.

48. A bead is made by drilling a cylindrical hole of radius
l mm tluough a sphere of radius 5 mm. See Figure 16.52.

(a) Set up a triple integral in cylindrical coordinates rep­
resenting the volume of the bead.

(b) Evaluate the integral.

1 mm 

5mm 

Figure 16.52 

49. A pile of hay is approximately in the shape of O S z S
2 - x2 - y2

, where x, y, z are in meters. At height z, the
density of the hay is 8 = (2 - z) kg/m3 .

(a) Write an integml representing the mass of hay in the
pile.

(b) Evaluate the integral.

50. Find the mass M of the solid region W given in spherical
coordinates by OS p S 3, 0 Se< 21r, 0 S ¢ S 1r/4.
The density, 8(P), at any point Pis given by the distance 
of P from the origin.

51. Write an integral representing the mass of a sphere of ra­
dius 3 if the density of the sphere at any point is twice the
distance of that point from the center of the sphere.

52. A sphere is made of material whose density at each point
is proportional to the square of the distance of the point
from the z-axis. The density is 2 gm/cm3 at a distance
of 2 cm from the axis. What is the mass of the sphere if
it is centered at the origin and has radius 3 cm?

53. The density of a solid sphere at any point is proportional
to the square of the distance of the point to the center of
the sphere. What is the ratio of the mass of a sphere of
radius I to a sphere of radius 2?

54. A spherical shell centered at the origin has an inner ra­
dius of 6 cm and an outer radius of 7 cm. The density, 8,
of the material increases linearly with the distance from
the center. At the inner surface, 8 = 9 gm/cm3 ; at the
outer surface, 8 = 11 gm/cm3 .

(a) Using spherical coordinates, write the density, 8, as
a function of radius, p. 

(b) Write an integral giving the mass of the shell.
(c) Find the mass of the shell.

55. (a) Write an iterated integral which represents the mass 
of a solid ball of radius a. The density at each point 
in the ball is k times the distance from that point to 
a fixed plane passing through the center of the ball. 

(b) Evaluate the integral.

56. Use appropriate coordinates to find the average distance
to the origin for points in the ice cream cone region
bounded by the hemisphere z = .Js - x2 - y2 and the
cone z = J x2 + y2 . [Hint: The volume of this region is
computed in Problem 27 on page 895.]

For Problems 57-60, use the definition of center of mass given 
on page 890. Assume x, y, z are in cm. 

57. Let C be a solid cone with both height and radius I
and contained between the surfaces z = J x2 + y2 and
z = 1. If C has constant mass density of I gm/cm3 , find
the z-coordinate of C's center of mass.

58. The density of the cone C in Problem 57 is given by
8(z) = z2 gm/cm3 . Find

(a) The mass of C.

(b) The z-coordinate of C's center of mass.

59. For a > 0, consider the family of solids bounded be­
low by the paraboloid z = a(x2 + y2

) and above by the
plane z = 1. If the solids all have constant mass den­
sity 1 gm/cm3 , show that the z-coordinate of the center
of mass is 2/3 and so independent of the parameter a.

60. Find the location of the center of mass of a hemisphere
of radius a and density b gm/cm3 .

For Problems 61-62, use the definition of moment of inertia 
given on page 890. 

61. The moment of inertia of a solid homogeneous ball B of
mass I and radius a centered at the origin is the same
about any of the coordinate axes (due to the symmetry of
the ball). It is easier to evaluate the sum of the three inte­
grals involved in computing the moment of inertia about
each of the axes than to compute them individually. Find
the sum of the moments of inertia about the x, y and z­
axes and thus find the individual moments of inertia.

62. Find the moment of inertia about the z-axis of the solid
"fat ice cream cone" given in spherical coordinates by
0 :::::; p :::::; a, 0 :::::; ¢ :::::; f and O S e :::::; 21r. Assume that
the solid is homogeneous with mass m.
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Problems 63-64 deal with the energy stored in an electric 
field. If a region of space lV contains an electric field whose 
magnitude at a point (x, y, z) is E(x, y, z), then 

Energy stored by field = ! r EE2 dV,
2 lw 

where Eis a property of the material called the permittivity.

63. The region between two concentric spheres, with radii
a < b, contains an electric field with magnitude E =

q l( 41rcp2 ), where p is the distance from the center of the 
spheres and q is the charge on the inner sphere. Assum­
ing the permittivity, E, is constant, find the total energy
stored irr the region between the two spheres.

64. Figure 16.53 shows a coaxial cable consisting of two
cylindrical conductors centered on the same axis, of radii
a < b. The electric field between the conductors has
magnitude E = q/(2ur), where r is the distance from
the axis and q is the charge per unit length on the cable.
The permittivity of the material between the conductors
is constant.4 Show that the �tared energy per unit length
is proportional to ln(b/a).

Figure 16.53 

65. The density, 8, of a gas in the region under z = 4 -

x2 - y2 and above the xy-plane is 8 = e-x-ygmlcm3 ,
where x, y, z are in cm. Write an integral, with limits of
integration, representing the mass of gas.

66. The density, 8, of the cylinder x2 
+ y2 :::::; 4, O :::::; z :::::; 3

varies with the distance, r, from the z-axis:

8 = 1 +r gm/cm3 . 

Find the mass of the cylinder, assuming x, y, z are in cm. 

Strengthen Your Understanding 

73. Which of the following integrals give the volume of the 
unit sphere?

67. The density of material at a point in a solid cylinder is
proportional to the distance of the point from the z-axis.
What is the ratio of the mass of the cylinder x2 

+ y2 :::::; 1,
O S z S 2 to the mass of the cylinder x2 + y2 :::::; 9,
OS z S 2?

68. A region W consists of the points above the xy-plane
and outside the sphere of radius I centered at the origin
and within the sphere of radius 3 centered at (0, 0, -1).
Write an expression for the volume of vV. Use cylindrical
coordinates and include limits of integration.

69. Compute the force of gravity exerted by a solid cylinder
of radius R, height H, and constant density 8 on a unit
mass at the center of the base of the cylinder. 

70. Electric charge is distributed throughout 3-space, with 
density proportional to the distance from the xy-plane.
Show that the total charge inside a cylinder of radius R
and height h, sitting on the xy-plane and centered along
the z-axis, is proportional to R2 h 

2
. 

71. Electric charge is distributed throughout 3-space with
density inversely proportional to the distance from the
origin. Show that the total charge inside a sphere of ra­
dius R is proportional to R2

• 

72. Figure 16.54 shows an alternative notation for spheiical
coordinates, used often in electrical engineering. Write
the volume element dV in this coordinate system.

z 
P = (x,y,.z) 

y 

Figure 16.54 

In Problems 74-75, explain what is wrong with the statement. 

1
2

"1"1
1 

74. The integral 
O O O 

1 dp d</J dB gives the volume 

inside the sphere of radius 1. 
4See C.R. Paul and S. A. Nasar, l11trod11ctio11 to Electro111ag11etic Fields, 2nd ed. (New York: McGraw-Hill, 1987). 
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75. Changing the order of integration gives In Problems 76-77, give an example of: 

{

0

2,,-
{

"/4 
{

2/cos<f, 

j n j O j O
p2 sin ¢ dp d<jJ dB 76. An integral in spherical coordinates that gives the volume

of a hemisphere.1 2/ cos</, lrr/4

1

2,r 
= p2 sin¢ dB d<jJ dp.

• 0 0 0 

77. An integral for which jt is more converuent to use spher­
ical coordinates than to use Cartesian coordinates.

16.6 APPLICATIONS OF INTEGRATION TO PROBABILIT 
__ 
v __________ _ 

To represent how a quantity such as height or weight is distributed throughout a population, we use 
a density function. To study two or more quantities at the same time and see how they are related, 
we use a multivariable density function. 

Density Functions 

Distribution of Weight and Height in Expectant Mothers 

Table 16.8 shows the distribution of weight and height in a survey of expectant mothers. The his­
togram in Figure 16.55 is constructed so that the volume of each bar represents the percentage in the 
corresponding weight and height range. For example, the bar representing the mothers who weighed 
60-70 kg and were 160-165 cm tall has base of area 10 kg· 5 cm= 50 kg cm. The volume of this
bar is 12%, so its height is 12%/50 kg cm = 0.24%/ kg cm. Notice that the units on the vertical
axis are % per kg cm, so the volume of a bar is a %. The total volume is 100% = 1.

Table 16.8 Distribution of weight and height in a survey of e,,pectant mothers, in% 

45-50 kg

150-155 cm 2

155-160 cm 0 

160-165 cm 1 

165-170 cm 0 

170-180 cm 0 

Totals by weight 3 

50-60 kg

4

12 
7 

8 

1 

32 

kg 

60-70 kg 70-80 kg

150 

4 2

8 2 

12 4 

12 6 

3 4 

39 18 

175 180 

160 
165

170 

155 cm 

80-105 kg

1 

1 

3 

2 

1 

8 

0.25% 

0.20% 

percent 
per kg cm 

Figure 16.55: Histogram representing the data in Table 16.8 

Totals by height 

13 

23 

27 

28 

9 

100 

Example1 

Solution 

16.6 APPLICATIONS OF INTEGRATION TO PROBABILITY 907 

Find the percentage of mothers in the survey with height between 170 and 180 cm. 

We add the percentages across the row corresponding to the 170-180 cm height range; this is equiv­
alent to adding the volumes of the corresponding rectangular solids in the histogram. 

Percentage of mothers = 0 + 1 + 3 + 4 + 1 = 9%. 

Smoothing the Histogram 

If we group the data using na1rnwer weight and height groups (and a larger sample), we can draw 
a smoother histogram and get finer estimates. In the limit, we replace the histogram with a smooth 
surface, in such a way that the volume under the surface above a rectangle is the percentage of 
mothers in that rectangle. We define a density function, p( w, h), to be the function whose graph is 
the smooth surface. It has the property that 

Fraction of sample with 

weight betw'een a and b and 

height between c and d 

Volume under graph of p 

over the rectangle 

a ::; w ::; b, c ::; h ::; d 

This density also gives the probability that a mother is in these height and weight groups. 

Joint Probability Density Functions 

Example2 

We generalize this idea to represent any two characteristics, x and y, distributed throughout a pop­
ulation. 

A function p( x, y) is called a joint probability density function, or pdf, for x and y if 

Probability that member of 

population has x between a and b 

and y between c and d 

where 

Volume under graph of p

above the rectangle 

a ::; x ::; b, c ::; y ::; d 

= l
b 

l
d 

p(x,y)dydx 
a , c 

1: 1: p(x, y) dy dx = 1 and p(x, y) � 0 for all x and y.

The probability that x falls in an interval of width .0.x around x0 and y falls in an interval of 
width .0.y around Yo is approximately p(xo, Yo).0.x.0.y. 

A joint density function need not be continuous, as in Example 2. In addition, as in Example 4, 
the integrals involved may be improper and must be computed by methods similar to those used for 
improper one-variable integrals. 

Let p(x, y) be defined on the square O ::; x ::; 1, 0::; y ::; 1 by p(x, y) = x + y; let p(x, y) = 0 if 
( x, y) is outside this square. Check that p is a joint density function. In terms of the distribution of 
x and yin the population, what does it mean that p(x, y) = 0 outside the square? 

jl.11· 

11111 

·1111 
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Solution 

Example3 

Solution 

Example4 

Solution 

First, we have p(x, y) 2 0 for all x and y. To check that pis a joint density function, we show that 
the total volume under the graph is l: 

1
00 

1
= p(x, y) dy dx = r1 r\x + y) dy dx

_00 -oo lo lo 

= 11 ( xy + y
2
2) [ dx = 11 ( x + �) dx = ( �

2 
+ �) [ = 1.

The fact that p(x, y) = O outside the square means that the variables x and y never take values
outside the interval [O, 1]; that is, the value of x and y for any individual in the population is always 
between O and 1. 

Two variables x and y are distributed in a population according to the density function of Example 2. 
Find the fraction of the population with x S 1/2, the fraction with y :S: 1/2 , and the fraction with 
both x :s; 1/2 and y :s; 1/2 .
The fraction with x :s; 1/2 is the volume under the graph to the left of the line x = 1/2 :

11/21\x+y)dydx= 11/2 (xy+ �2) 1: dx= 11/2 (x+�) dx
= ( �

2 

+ �) c

2 

= � + � = t
Since the function and the regions of integration are symmetric in x and y, the fraction with y :S: 1/2
is also 3/8. Finally, the fraction with both x :S: 1/2 and y :S: 1/2 is 

11/2
1

1/\x + y) dy dx = 11/2 ( xy + y22) c
2 clx = 11/2 ( �x + �) dx

(�x2 + �x) [/2 = 116 + 116 = t 

Recall that a one-variable density function p( x) is a function such that p( x) 2 0 for all x, and 
J�
00

p(x) clx = 1.

Let p1 and p2 be one-variable density functions for x and y, respectively . Check that p(x, y)
P1 (x )p2 (y) is a joint density function. 

Since both p1 and p2 are density functions, they are nonnegative everywhere. Thus, their product 
p1 (x)p2(x) = p(x, y) is nonnegative everywhere. Now we must check that the volume under the
graph of p is 1. Since J�

00 
p2 (y) cly = 1 and J�

00 
Pl ( x) dx = 1, we have 

1-: 1-: p(x, y) dy clx = 1-: 1-: P1(x)p2(Y) dydx = 1-: JJ1 (x) ([: P2(Y) cly) clx
= 1-: P1 (x)(l) clx = 1-: P1 (x) dx = 1.

16.6 APPLICATIONS OF INTEGRATION TO PROBABILITY 909 

Examples A machine in a factory is set to produce components l O cm long and 5 cm in diameter. In fact, 
there is a slight variation from one component to the next. A component is usable if its length and 
diameter deviate from the correct values by less than 0.1 cm. With the length, x, in cm and the 
diameter, y, in cm, the probability density function is 

What is the probability that a component is usable? (See Figure 16 .56.) 

,. Figure 16.56: The density function p(x, y) = so;2 e-1oo(x-10)2 e-50(y-5)2

Solution We know that 

Probability that x and y satisfy xo - ti.x :S: x :S: xo + ti.x
Yo - ti.y :S: Y :S: Yo + ti.y

50v'2
1

Yo+6y 
1

xo+6x 
= -- . e-lDO(x-10)2 e-50(y-5)2 dx dy.

7r Yo-6.y xo-6.x 

Thus, 

Probability that 
component is usable 

= _v_ L, e-lOO(x-10)2 e-50(y-5)2 dx cly.50 '2
15.1

1
10.l 

7r 
4.9 9.9 

The double integral must be evaluated numerically. This yields 

Probability that 
component is usable 

50v'2 
= �-(0.02556) = 0.57530.

7r 

Thus, there is a 57 .530% chance that the component is usable. 

Exercises and Problems for Section 16.6 

Exercises 

In Exercises 1-6, check whether pis a joint density function.
Assume p(x, y) = 0 outside the region R. 

1. p(x, y) = 1/2, where R is 4 S x S 5, -2 Sy S O 
2. p(x, y) = 1, where R is OS x S 1, 0 Sy S 2 
3. p(x, y) = x + y, where R is -1 S x S 1, 0 Sy S 1 
4. p(x, y) = 6(y - x), where R is OS x Sy S 2 
5. p(x,y) = (2/1r)(l -x2 -y2

), where Ris x2 +y2
::; 1 

6. p(x,y) = xye-x-y, where Ris x 2". O,y 2". 0 

In Exercises 7-14, let p be the joint density function such that 
p(x, y) = xy in R, the rectangle O S x S 2, 0 Sy S 1, and 

p(x, y) = 0 outside R. Find the fraction of the population
satisfying the given constraints. 

7. x 2". 3 

9. x + y S 3 

11. x 2". y

13. 0 S x S 1, 0 Sy S 1/2

8. x = 1 

10. -1 S x S 1

12. x + y S 1 

14. Within a distance 1 from the origin 
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Problems 

15. Let x and y have joint density function

( )  {
-
3

2(x+2y)forOSxS1,0S ySl,
p x,y = 

O otherwise. 

Find the probability that 

(a) x > 1/3. (b) x < (1/3) + y. 

16. The joint density function for x, y is given by

J(x, y) = { kxy for O:::; x:::; y:::; 1,
O otherwise. 

(a) Determine the value of k.
(b) Find the probability that (x, y) lies in the shaded re­

gion in Figure 16.5 7 .

'Y = x

y= Ji

x 

Figure 16.57 

17. A joint density function is given by

f(x, y) = { kx2 for OS x S 2 and O:::; y:::; 1, 
O otherwise. 

(a) Find the value of the constant k.
(b) Find the probability that (x, y) satisfies x + y:::; 2.
(c) Find the probability that (x, y) satisfies x :::; 1 and

y S 1/2.

18. A point is chosen at random from the region S in the xy­
plane containing all points (x, y) such that -1 :::; x :::;

1, - 2 S y S 2 and x - y � 0 ("at random" means that
the density function is constant on S).

(a) Determine the joint density function for x and y.
(b) IfT is a subset of S with area a, then find the prob-

ability that a point (x, y) is in T.

19. A health insurance company wants to know what propor­
tion of its policies are going to cost the company a lot of
money because the insured people are over 65 and sick.
In order to compute this proportion, the company defines
a disability index, x, with O S x :::; 1, where x = 0
represents perfect health and x = 1 represents total dis­
ability. In addition, the company uses a density function,
f(x, y), defined in such a way that the quantity

J(x, y) t.x t.y 

approximates the fraction of the population with disabil­
ity index between x and x + t.x, and aged between y 
and y + t.y. The company knows from experience that a 
policy no longer covers its costs if the insured person is
over 65 and has a disability index exceeding 0.8. Write
an expression for the fraction of the company's policies 
held by people meeting these criteria. 

20. The probability that a radioactive substance will decay at
time t is modeled by the density function

fort � 0, and p(t) = 0 fort < 0. The positive constant 
.>- depends on the material, and is called the decay rate. 

(a) Check that p is a density function.
(b) Two materials with decay rates .>-andµ decay inde­

pendently of each other; their joint density function
is the product of the individual density functions.
Write the joint density function for the probability
that the first material decays at time t and the second
at times.

(c) Find the probability that the first substance decays
before the second.

21. Figure 16.58 represents a baseball field, with the bases at
(1, 0), (1, 1), (0, 1), and home plate at (0, 0). The outer
bound of the outfield is a piece of a circle about the origin
with radius 4. When a ball is hit by a batter we record the
spot on the field where the ball is caught. Let p(r, (}) be
a function in the plane that gives the density of the distri­
bution of such spots. Write an expression that represents
the probability that a hit is caught in

(a) The right field (region R).
(b) The center field (region C).

'Y 

4 

1 

Figure 16.58 

x 
4 

22. Two independent random numbers x and y between O
and 1 have joint density function

{ 1 ifO < x, y < 1 p(x
,
y) =

0 othe�vise. -

This problem concerns the average z = (x+y) /2, whid1 
has a one-variable probability density function of its own. 

Strengthen Your Understanding 

In Problems 23-24, explain what is wrong with the statement. 

23. If p1 (x, y) and p2(x, y) are joint density functions, then
p1 (x, y) + p2 (x, y) is a joint density function.

24. If p(w, h) is the probability density function of the
weight and height of mothers discussed in Section 16.6, 
then the probability that a mother weighs 60 kg and has 
a height of 170 cm is p(60, 170). 

In Problems 25-26, give an example of: 

25. Values for a, b, c and d such that f is a joint density
function:

f ( ) { 1 for a S x S b and c S y S d,x,y = 
O otherwise 

26. A one-variable function g(y) such that f is a joint density

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER SIXTEEN 911 

(a) Find F(t), the probability that z :::; t. Treat sepa­
rately the cases t :::; 0, 0 < t :::; 1/2, 1/2 < t :::; 1,
1 < t. Note that F(t) is the cumulative distribution
function of z. 

(b) Find and graph the probability density function of z. 

(c) Are x and y more likely to be near 0, 1/2, or 1?
What about z?

function: 

f(x, y) = { g(y) for OS x S 2 and O Sy S 1, 
O otherwise 

For Problems 27-30, let p(x, y) be a joint density function for 
x and y. Are the following statements true or false? 

27. lb 1: p(x, y) dy dx is the probability that a S x S

b. 

28. OSp(x,y)Slfor allx.

29. lb 

p(x, y) dx is the probability that a S x Sb. 

30.1: 1: p(x,y)dydx = 1.

CHAPTER SUMMARY (see also Ready Reference at the end of the book) 

• Double Integral
Definition as a limit of Riemann sum; interpretation as
volume under graph, as area, as average value, or as to­
tal mass from density; estimating from contour diagrams
or tables; evaluating using iterated integrals; setting up in
polar coordinates.

• Triple Integral

Definition as a limit of Riemann sum; interpretation as 
volume of solid, as total mass, or as average value; eval­
uating using iterated integrals; setting up in cylindrical or 
spherical coordinates. 

• Probability
Joint density functions, using integrals to calculate prob­
ability.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER SIXTEEN 

Exercises 

For Exercises 1-3 , sketch the region of integration and evalu­
ate the integral. 

1. 
1

3

1

2x 

(x2 
+ y2 ) dy dx 

2.1

7' 

1

x 

sinxdydx 

3
. fO fO 

2xy dy dx 
-2 -V9-x2 

In Exercises 4--9, sketch the region of integration. 

4. f 1 J� J(x, y) dy dx
-1 -J1-x 2 

5.12 j0

J(x, y) dx dy 
0 -� 

14 
J.Jij 6. f(x,y)dxdy

1 -.Jij 
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11 11 1� 8. f(x, y , z) dy dz dx
-1 -1 0 

9
, 

1

1

1

Y 

1

x 

f(x, y,z)dzdxdy 

In Exercises I0-13, choose coordinates and write a triple in­
tegral for a function over the region. Include limits of integra­
tion. 
10. 

12. 

14. 

15. 

16. 

13. 

2cm 
f+-----+j 

Write JR f (x, y) dA as an iterated integral if R is the 
region in Figure 16.59. 

y 

b x
-2 4 

Figure 16.59 

Consider the integral f0
4 

J0
-<Y-4ll2 

g(x, y) dx dy. 

(a) Sketch the region over which the integration is being 
performed. 

(b) Write the integral with the order of the integration
reversed. 

Evaluate JR Jx2 + y2 dA where R is the region in Fig-
ure 16.60. 

y 
2 

� 
- x

-2 -1 2 

Figure 16.60 

In Exerc ises 17-23, calculate the integral exactly. 

17. 1
10
1
0.1 

xexy dydx 

18. 1
1 

1\in (2 - y)) cos (3x - 7) dx dy 

19. 1
1 

1

Y 

(sin3 x)(cosx)(cosy) dxdy 

23. 1
1 

1

z 

1

Y 
xyzdxdydz 

24. Using Cartesian, cylindrical, or spherical coordinates,
write an equation for the following surfaces. Each equa­
tion should be of the form "Coordinate = Constant."

(a) z (b) z 

�y 
2 / y 

�x

3""'- x

(c) z (d) z 

y 

(e) z (0 z 

�' 
x (1, 1, 1) 

• 

/ y 

-5

• 

(1, 1, 0) 

x

If Wis the region in Figure 16.61, what are the limits of inte­
gration in Problems 25-27? 

z 

(1,0,-1) 

Figure 16.61: Cone with spherical cap 

Problems 

In Problems 29-37, decide (without calculating its value) 
whether the integral is positive, negative, or zero. Let T,V be 
the solid half-cone bounded 1by z = Jx2 + y2, z = 2 and 
the yz-plane with x 2 0. 

29. 

31. 

33. 

35. 

37. 

fwxdV 

fw(z-Jx2 + y
2) dV

fw(z - 2) dV

fwxydV

fw e-xyz dV

30. 

32. 

34. 

36. 

fwzdV

fw Jx2 + y
2dV

fw ydV

fw xyzdV

38. (a) Set up a triple integral giving the volume of the tetra­
hedron bounded by the three coordinate planes and 
the plane z - x + y = 2. 

(b) Evaluate the integral.
39. Let B be the solid sphere of radius 1 centered at the ori­

gin; let T be the top half of the sphere (z 2 0); let R be
the right half of the sphere (x 2 0).

(a) Without calculation, decide which of the following
integrals are zero. What are the signs of the others?
(i) f 8 dV (ii) fr zdV (iii) JR zdV

(b) Evaluate, numerically where necessary, any of the
three integrals that is not zero. 

40. Sketch the region R over which the integration is being
performed:

1,r/21,r 11 0 ,r/2 0 
f (p, cp, e)/ sin cp dp dcp d().

41. (a) Convert the following triple integral to spherical co­
ordinates: 

12,r131r 0 0 0 

r dzdrd(). 

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER SIXTEEN 

25.1
7

1
? 

1
?

f(p,cp,())/sincpdpdcpd()

26. 1
? 

1
? 

1
? 

g(r, (), z)r dz dr d()

27.1
7

1
? 

1
? 

h(x, y,z)dzdydx

913 

28. Set up JR f dV as an iterated integral in all six possible
orders of integration, where R is the hemisphere bounded
by the upper half of x2 + y2 + z2 = 1 and the xy-plane.

(b) Evaluate either the original integral or your answer
to part (a). 

In Problems 42-45, sketch the region of integration and write 
a triple integral, including limits, over the region. 

42. Region: 0 ::;: z ::;: 1 + x, 0 ::;: x ::;: 2, 0 ::;: y ::;: 1.
43. Region: 2 ::;: z ::;: 3, 5 ::;: x2 + y2 ::;: 6.
44. Region: 3 ::;: x2 + y2 + z2 ::;: 4, 0 ::;: () ::;: 1r.
45. Region: x2 + y2 + z2 ::;: 9, x2 + y2 ::;: 1, z 2 0.

In Problems 46-50, is the double integral positive or negative, 
or is it impossible to tell? The finite regions T, B, R, Lare in 
the xy-plane. 

46. 

48. 

50. 

T lies in the region where y > 0, 
R lies in the region where x > 0, 
B lies in the region where y < 0, 
L lies in the region where x < 0. 

i e-xdA 47. l y3dA 

l (x + y2) dA 49. 1 y3dA 

1 (x + y2) dA 

In Problems 51-58, decide (without calculating its value) 
whether tbe integral is positive, negative, or zero. Let J,Tf be 
the solid sphere bounded by x2 + y2 + z2 = 1. 

51. fw zdV

53. fw xydV

55. fwxyzdV

57. fw(z2 - 1) dV

52. 

54. 

56. 

58. 

fwxdV 

fw sin( %xy) dV 

J, e-xyz dV 
w 

fw J x
2 + y2 + z2 dV
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In Problems 59-62, evaluate the integral by changing it to 
cylindrical or spherical coordinates. 

59. 

60. 

61. 

J

v'3 
J

J3-x2 ;·4-x2 -y2 l 
2 dzdydx 

-v'3 -J3-x2 1 z 

1
1

1�1� 0 0 0 
(z + Jx 2 + y2) dzdydx 1

3 

J

J9-z2 

J

J9-y
2 -

z
2 

X2 dx dydz 
0 - � - ,/�9--,-v2 ___ z_2 

62. ( ( .2 
z 

2)3/2 dV, if Wis 1 S x2 
+ y2 S 4, 

Jw x +y 
OS z S 4 

63. (a) Sketch the region of integration of

(b) Evaluate the quantity in part (a).

64. A circular lake 10 km in diameter has a circular island
2 km in diameter at its center. At t kilometers from the
island the depth of the lake is lOOt( 4 - t) meters, where
O S t S 4. What is the volume of water in the lake?

65. A solid region D is a half cylinder with radius 1 lying
horizontally with its rectangular base in the xy-plane and
its axis along the line y = 1 from x = 0 to x = 10. (The
region is above the xy-plane.)

(a) What is the equation of the curved surface of this
half cylinder?

(b) Write the limits of integration of the integral
JD f(x, y, z) dV in Cartesian coordinates.

66. Find the volume of the region bounded by z = x + y, 

O S x S 5, 0 S y S 5, and the planes x = 0, y = 0, 
and z = 0. 

67. (a) Sketch the region of integration, or describe it pre­
cisely in words, for the following integral: Jl Jl l� 

-1 -1 0 

f(x, y, z) dy dz dx. 

(b) Evaluate the integral with f(x, y, z) = (y2 +z2 ) 312 .
68. A thin circular disk of radius 12 cm has density which

increases linearly from 1 gm/cm2 at the center to 25
gm/cm2 at the rim.

(a) Write an iterated integral representing the mass of
the disk.

(b) Evaluate the integral.

69. Figure 16.62 shows part of a spherical ball of radius 5 cm.
Write an integral in cylindrical coordinates representing
the volume of this region and evaluate it.

70. 

71. 

72. 

Figure 16.62 

Find the mass of the solid bounded by the xy-plane, yz­
plane, xz-plane, and the plane 4x + 3y + z = 12, if the 
density of the solid is given by o(x, y, z) = x 2

. 

Figure 16.63 shows part of a spherical ball of radius 5 cm. 
Write an integral in spherical coordinates representing 
the volume of this region and evaluate it. 

Figure 16.63 

A forest next to a road has the shape in Figure 16.64. The 
population density of rabbits is proportional to the dis­
tance from the road. It is O at the road, and 10 rabbits per 
square mile at the opposite edge of the forest. Find the 
total rabbit population in the forest. 

>+----10 miles- ---+< 
Road -..-----------�-(-2, 5) (8, 5) 1 

Forest 

(O, O) -6 miles----+1 (G, O) 

Figure 16.64 

5 miles 

l 

73. A solid hemisphere of radius 2 cm has density, in
gm/cm3 , at each point equal to the distance in centime­
ters from the point to the center of the base. Write a triple
integral representing the total mass of the hemisphere.
Evaluate the integral.

74. Find the volume that remains after a cylindrical hole of
radius R is bored through a sphere of radius a, where
0 < R < a, passing through the center of the sphere
along the pole.

75. Two spheres, one of radius 1, one of radius y'2, have cen­
ters that are 1 unit apart. Write a triple integral, including
limits of integration, giving the volume of the smaller re­
gion that is outside one sphere and inside the other. Eval­
uate the integral.

For Problems 76-77, use the definition of moment of inertia 
on page 890. 

76. Consider a rectangular brick with lengt� 5, width 3, and
height 1, and of uniform density 1. Compute the moment
of inertia about each of the three axes passing through the
center of the brick, perpendicular to one of the sides.

77. Compute the moment of inertia of a hall of radius R

about an axis passing through its center. Assume that the
ball has a constant density of 1.

78. A particle of mass m is placed at the center of one base
of a circular cylindrical shell of inner radius r1, outer ra-

CAS Challenge Problems 

80. Let D be the region inside the tdangle with vertices
(0, 0), (1, 1) and (0, 1). Express the double integral
JD e

Y2 
dA as an iterated integral in two different ways.

Calculate whichever of the two you can do by hand, and
calculate the other with a computer algebra system if pos­
sible. Compare the answers.

81. Let D be the region inside the circle x2 
+ y2 

= 1. Ex-
s'� press the integral JD {; x2 + y2dA as an iterated inte-

gral in both Cartesian and polar coordinates. Calculate 
whichever of the two you can do by hand, and calcu­
late the other with a computer algebra system if possible. 
Compare the answers. 

82. Compute the iterated integrals 1
1 J0 

( 
x � Y

)
3 dydx 

0 -1 X 
y 
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dius r2, height h, and constant density o. Find the force 
of gravity exerted by the cylinder on the particle. 

79. (a) Find the constant k such that f(x, y) = k(x + y)
is a probability density function the quarter disk 
x2 

+ y2 S 100, x 2'. 0, y 2'. ·O. [Hint: Use polar 
coordinates.] 

(b) Find the probability that a point chosen in the quarter
disk according to the probability density in part (a)
is less than 7 units from the origin.

Jo

1
1 

+ and x Y
)3 dxdy. Explain why your answers 

- 1 o (x - Y 
do not contradict Theorem 16.1 on page 876. 

83. For each of the following functions, find its average value
over the square -h S x S h, -h S y S h, calculate
the limit of your answer as h --+ 0, and compare with the
value of the function at (0, 0 ). Assume a, b, c, d, e, and
k are constants.

4 4 d 22 3 3 F(x, y) =a+ bx + cy + x y + ex y 

G(x, y) = a sin(kx) + bcos(ky) + c 

H(x, y) = ax 2e"'+Y 
+ by

2e"'-Y 

Formulate a conjecture from your results and explain 
why it makes sense. 

PROJECTS FOR CHAPTER SIXTE:;:.;;E;;,...N _____________ _ 

1. A Connection Between e and 1r
In this problem you will derive one of the remarkable formulas of mathematics, namely that Joo - .2 

-oo 
e x dx = /7r. 

(a) Change the following double integral into polar coordinates and evaluate it:

(b) Explain why

Joo Joo 2 2 

-oo -oo
e-(x +Y )dxdy.

(c) Explain why the answers to parts (a) and (b) give the formula we want.

2. Average Distance Walked to an Airport Gate
At airports, departure gates are often lined up in a terminal like points along a line. If you arrive
at one gate and proceed to another gate for a connecting flight, what proportion of the length of
the terminal will you have to walk, on average?

(a) One way to model this situation is to randomly choose two numbers, 0 ::; x S 1 and
O ::; y ::; 1, and calculate the average value of Ix - YI· Use a double integral to show that, 
on average, you have to walk 1 / 3 the length of the terminal.
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(b) The terminal gates are not actually located continuously from Oto 1, as we assumed in part
(a). There are only a finite number of gates and they are likely to be equally spaced. Suppose
there are n + 1 gates located 1/n units apart from one end of the terminal (xo = 0) to the
other (xn = 1). Assuming that all pairs ( i, j) of arrival and departure gates are equally
likely, show that

1
n n I i· j I Average distance between gates= 

( )2 ·LL 
- - -

·n+ 1 n n 
i=O j=O 

Identify this sum as approximately (but not exactly) a Riemann sum with n subdivisions 
for the integrand used in part (a). Compute this sum for n = 5 and n = 10 and compare to 
the answer of 1/3 obtained in part (a). 




