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16.1 THE DEFINITE INTEGRAL OF A FUNCTION OF TWO VARIABLES

The definite integral of a continuous one-variable function, f , is a limit of Riemann sums:

∫

b

a

f (x) dx = lim
Δx→0

∑

i

f (xi) Δx,

where xi is a point in the ith subdivision of the interval [a, b]. In this section we extend this definition

to functions of two variables. We start by considering how to estimate total population from a two-

variable population density.

Population Density of Foxes in England
The fox population in parts of England can be important to public health officials because animals

can spread diseases, such as rabies. Biologists use a contour diagram to display the fox population

density, D; see Figure 16.1, where D is in foxes per square kilometer.1 The bold contour is the

coastline, which may be thought of as the D = 0 contour; clearly the density is zero outside it. We

can think of D as a function of position, D = f (x, y) where x and y are in kilometers from the

southwest corner of the map.

150

100

125

50

25

75

60 9030 120 150 180
kilometers east

kilometers north

N
or

th

1.
5

0.5

2

1.5

2

1
0.

5

0.5

1

1.5

1.5
2

1

Figure 16.1: Population density of foxes in southwestern England

Example 1 Estimate the total fox population in the region represented by the map in Figure 16.1.

Solution We subdivide the map into the rectangles shown in Figure 16.1 and estimate the population in each

rectangle. For simplicity, we use the population density at the northeast corner of each rectangle. For

example, in the bottom left rectangle, the density is 0 at the northeast corner; in the next rectangle to

the east (right), the density in the northeast corner is 1. Continuing in this way, we get the estimates

in Table 16.1. To estimate the population in a rectangle, we multiply the density by the area of the

rectangle, 30 ⋅ 25 = 750 km2. Adding the results, we obtain

Estimate of population = (0.2 + 0.7 + 1.2 + 1.2 + 0.1 + 1.6 + 0.5 + 1.4

+ 1.1 + 1.6 + 1.5 + 1.8 + 1.5 + 1.3 + 1.1 + 2.0

+ 1.4 + 1.0 + 1.0 + 0.6 + 1.2)750 = 18,000 foxes.

1From “On the spatial spread of rabies among foxes”, Murray, J. D. et al, Proc. R. Soc. Lond. B, 229: 111–150, 1986.
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Taking the upper and lower bounds for the population density on each rectangle enables us to find

upper and lower estimates for the population. Using the same rectangles, the upper estimate is ap-

proximately 35,000 and the lower estimate is 4,000. There is a wide discrepancy between the upper

and lower estimates; we could make them closer by taking finer subdivisions.

Table 16.1 Estimates of population density (northeast corner)

0.0 0.0 0.2 0.7 1.2 1.2

0.0 0.0 0.0 0.0 0.1 1.6

0.0 0.0 0.5 1.4 1.1 1.6

0.0 0.0 1.5 1.8 1.5 1.3

0.0 1.1 2.0 1.4 1.0 0.0

0.0 1.0 0.6 1.2 0.0 0.0

Definition of the Definite Integral

The sums used to approximate the fox population are Riemann sums. We now define the definite

integral for a functionf of two variables on a rectangular region. Given a continuous functionf (x, y)

defined on a region a ≤ x ≤ b and c ≤ y ≤ d, we subdivide each of the intervals a ≤ x ≤ b and

c ≤ y ≤ d into n and m equal subintervals respectively, giving nm subrectangles. (See Figure 16.2.)

x1 x2 x3

y1

y2

y3

x

y

a = x0 b = xn

c = y0

d = ym

Figure 16.2: Subdivision of a rectangle into nm subrectangles

The area of each subrectangle is ΔA = Δx Δy, where Δx = (b − a)∕n is the width of each

subdivision on the x-axis, and Δy = (d − c)∕m is the width of each subdivision on the y-axis. To

compute the Riemann sum, we multiply the area of each subrectangle by the value of the function

at a point in the rectangle and add the resulting numbers. Choosing the maximum value, Mij , of the

function on each rectangle and adding for all i, j gives the upper sum,
∑

i,j MijΔxΔy.

The lower sum,
∑

i,j LijΔxΔy, is obtained by taking the minimum value on each rectangle. If

(uij , vij ) is any point in the ij-th subrectangle, any other Riemann sum satisfies

∑

i,j

LijΔxΔy ≤
∑

i,j

f (uij , vij) ΔxΔy ≤
∑

i,j

MijΔxΔy.

We define the definite integral by taking the limit as the numbers of subdivisions, n and m, tend to

infinity. By comparing upper and lower sums, as we did for the fox population, it can be shown that

the limit exists when the function, f , is continuous. We get the same limit by letting Δx and Δy tend

to 0. Thus, we have the following definition:
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Suppose the function f is continuous on R, the rectangle a ≤ x ≤ b, c ≤ y ≤ d. If (uij , vij)

is any point in the ij-th subrectangle, we define the definite integral of f over R

∫R
f dA = lim

Δx,Δy→0

∑

i,j

f (uij , vij)ΔxΔy.

Such an integral is called a double integral.

The case when R is not rectangular is considered on page 844. Sometimes we think of dA as

being the area of an infinitesimal rectangle of length dx and height dy, so that dA = dx dy. Then

we use the notation2

∫R
f dA =

∫R
f (x, y) dx dy.

For this definition, we used a particular type of Riemann sum with equal-sized rectangular sub-

divisions. In a general Riemann sum, the subdivisions do not all have to be the same size.

Interpretation of the Double Integral as Volume

Just as the definite integral of a positive one-variable function can be interpreted as an area, so the

double integral of a positive two-variable function can be interpreted as a volume. In the one-variable

case we visualize the Riemann sums as the total area of rectangles above the subdivisions. In the

two-variable case we get solid bars instead of rectangles. As the number of subdivisions grows, the

tops of the bars approximate the surface better, and the volume of the bars gets closer to the volume

under the graph of the function. (See Figure 16.3.)

y

x

z

y

x

z

Figure 16.3: Approximating volume under a graph with finer and finer Riemann sums

Thus, we have the following result:

If x, y, z represent length and f is positive, then

Volume under graph

of f above region R
=
∫R

f dA.

Example 2 Let R be the rectangle 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Use Riemann sums to make upper and lower

estimates of the volume of the region above R and under the graph of z = e−(x
2+y2).

2Another common notation for the double integral is ∫ ∫
R
fdA.
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Solution If R is the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, the volume we want is given by

Volume =
∫R

e−(x
2+y2) dA.

We divide R into 16 subrectangles by dividing each edge into four parts. Figure 16.4 shows that

f (x, y) = e−(x
2+y2) decreases as we move away from the origin. Thus, to get an upper sum we

evaluate f on each subrectangle at the corner nearest the origin. For example, in the rectangle 0 ≤

x ≤ 0.25, 0 ≤ y ≤ 0.25, we evaluate f at (0, 0). Using Table 16.2, we find that

x

y

z

Figure 16.4: Graph of e−(x
2+y2) above the rectangle R

Upper sum = (1 + 0.9394 + 0.7788 + 0.5698

+ 0.9394 + 0.8825 + 0.7316 + 0.5353

+ 0.7788 + 0.7316 + 0.6065 + 0.4437

+ 0.5698 + 0.5353 + 0.4437 + 0.3247)(0.0625) = 0.68.

To get a lower sum, we evaluate f at the opposite corner of each rectangle because the surface

slopes down in both the x and y directions. This yields a lower sum of 0.44. Thus,

0.44 ≤
∫R

e−(x
2+y2) dA ≤ 0.68.

To get a better approximation of the volume under the graph, we use more subdivisions. See

Table 16.3.

Table 16.2 Values of f (x, y) = e−(x
2+y2) on the rectangle R

x

y

0.0 0.25 0.50 0.75 1.00

0.0 1 0.9394 0.7788 0.5698 0.3679

0.25 0.9394 0.8825 0.7316 0.5353 0.3456

0.50 0.7788 0.7316 0.6065 0.4437 0.2865

0.75 0.5698 0.5353 0.4437 0.3247 0.2096

1.00 0.3679 0.3456 0.2865 0.2096 0.1353

Table 16.3 Riemann sum approximations to ∫
R
e−(x

2+y2) dA

Number of subdivisions in x and y directions

8 16 32 64

Upper 0.6168 0.5873 0.5725 0.5651

Lower 0.4989 0.5283 0.5430 0.5504
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The exact value of the double integral, 0.5577…, is trapped between the lower and upper sums.

Notice that the lower sum increases and the upper sum decreases as the number of subdivisions

increases. However, even with 64 subdivisions, the lower and upper sums agree with the exact value

of the integral only in the first decimal place.

Interpretation of the Double Integral as Area

In the special case that f (x, y) = 1 for all points (x, y) in the region R, each term in the Riemann

sum is of the form 1 ⋅ ΔA = ΔA and the double integral gives the area of the region R:

Area(R) =
∫R

1 dA =
∫R

dA

Interpretation of the Double Integral as Average Value
As in the one-variable case, the definite integral can be used to define the average value of a function:

Average value of f

on the region R
=

1

Area of R ∫R
f dA

We can rewrite this as

Average value × Area of R =
∫R

f dA.

If we interpret the integral as the volume under the graph of f , then we can think of the average

value of f as the height of the box with the same volume that is on the same base. (See Figure 16.5.)

Imagine that the volume under the graph is made out of wax. If the wax melted within the perimeter

of R, then it would end up box-shaped with height equal to the average value of f .

x

y

z

✛

✛

Average value of f✲Base of the box

is the rectangle R

Figure 16.5: Volume and average value

Integral over Regions that Are Not Rectangles
We defined the definite integral ∫

R
f (x, y) dA, for a rectangular region R. Now we extend the defi-

nition to regions of other shapes, including triangles, circles, and regions bounded by the graphs of

piecewise continuous functions.

To approximate the definite integral over a region, R, which is not rectangular, we use a grid

of rectangles approximating the region. We obtain this grid by enclosing R in a large rectangle and

subdividing that rectangle; we consider just the subrectangles which are inside R.

As before, we pick a point (uij , vij) in each subrectangle and form a Riemann sum
∑

i,j

f (uij , vij)ΔxΔy.

This time, however, the sum is over only those subrectangles within R. For example, in the case of

the fox population we can use the rectangles which are entirely on land. As the subdivisions become
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finer, the grid approximates the region R more closely. For a function, f , which is continuous on R,

we define the definite integral as follows:

∫R
f dA = lim

Δx,Δy→0

∑

i,j

f (uij , vij)ΔxΔy

where the Riemann sum is taken over the subrectangles inside R.

You may wonder why we can leave out the rectangles which cover the edge ofR—if we included

them, might we get a different value for the integral? The answer is that for any region that we are

likely to meet, the area of the subrectangles covering the edge tends to 0 as the grid becomes finer.

Therefore, omitting these rectangles does not affect the limit.

Convergence of Upper and Lower Sums to Same Limit

We have said that if f is continuous on the rectangleR, then the difference between upper and lower

sums for f converges to 0 as Δx and Δy approach 0. In the following example, we show this in a

particular case. The ideas in this example can be used in a general proof.

Example 3 Let f (x, y) = x2y and let R be the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Show that the difference between

upper and lower Riemann sums for f on R converges to 0, as Δx and Δy approach 0.

Solution The difference between the sums is

∑

MijΔxΔy −
∑

Lij ΔxΔy =
∑

(Mij − Lij) ΔxΔy,

whereMij and Lij are the maximum and minimum of f on the ij-th subrectangle. Since f increases

in both the x and y directions, Mij occurs at the corner of the subrectangle farthest from the origin

and Lij at the closest. Moreover, since the slopes in the x and y directions don’t decrease as x and y

increase, the difference Mij−Lij is largest in the subrectangleRnm which is farthest from the origin.

Thus,
∑

(Mij − Lij ) ΔxΔy ≤ (Mnm − Lnm)
∑

ΔxΔy = (Mnm − Lnm)Area(R).

Thus, the difference converges to 0 as long as (Mnm − Lnm) does. The maximum Mnm of f on the

nm-th subrectangle occurs at (1, 1), the subrectangle’s top right corner, and the minimumLnm occurs

at the opposite corner, (1 − 1∕n, 1 − 1∕m). Substituting into f (x, y) = x2y gives

Mnm − Lnm = (1)2(1) −
(

1 −
1

n

)2 (

1 −
1

m

)

=
2

n
−

1

n2
+

1

m
−

2

nm
+

1

n2m
.

The right-hand side converges to 0 as n, m → ∞, that is, as Δx,Δy → 0.

Exercises and Problems for Section 16.1 Online Resource: Additional Problems for Section 16.1
EXERCISES

1. Table 16.4 gives values of the function f (x, y), which

is increasing in x and decreasing in y on the region

R ∶ 0 ≤ x ≤ 6, 0 ≤ y ≤ 1. Make the best possible

upper and lower estimates of ∫
R
f (x, y) dA.

Table 16.4

y

x

0 3 6

0 5 7 10

0.5 4 5 7

1 3 4 6

2. Values of f (x, y) are in Table 16.5. Let R be the rect-

angle 1 ≤ x ≤ 1.2, 2 ≤ y ≤ 2.4. Find Riemann

sums which are reasonable over and underestimates for

∫
R
f (x, y) dA with Δx = 0.1 and Δy = 0.2.

Table 16.5

y

x

1.0 1.1 1.2

2.0 5 7 10

2.2 4 6 8

2.4 3 5 4
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3. Figure 16.6 shows contours of g(x, y) on the region R,

with 5 ≤ x ≤ 11 and 4 ≤ y ≤ 10. Using Δx =

Δy = 2, find an overestimate and an underestimate for

∫
R
g(x, y) dA.

5 7 9 11
4

6

8

10

1
2

3

4

5

x

y

Figure 16.6
4. Figure 16.7 shows contours of f (x, y) on the rectangle

R with 0 ≤ x ≤ 30 and 0 ≤ y ≤ 15. Using Δx = 10

and Δy = 5, find an overestimate and an underestimate

for ∫
R
f (x, y) dA.

10 20 30
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15

2
4

6

8

10

x

y

Figure 16.7

5. Figure 16.8 shows a contour plot of population density,

people per square kilometer, in a rectangle of land 3 km

by 2 km. Estimate the population in the region repre-

sented by Figure 16.8.
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Figure 16.8

In Exercises 6–7, for x and y in meters and R a region on the

xy-plane, what does the integral represent? Give units.

6.
∫
R

�(x, y) dA, where �(x, y) is bacteria population, in

thousands per m2.

7.
1

Area of R ∫
R

ℎ(x, y) dA, where ℎ(x, y) is the height of

a tent, in meters.
PROBLEMS

In Problems 8–14, decide (without calculation) whether the

integrals are positive, negative, or zero. Let D be the region

inside the unit circle centered at the origin, let R be the right

half of D, and let B be the bottom half of D.

8. ∫
D
1dA 9. ∫

R
5x dA

10. ∫
B
5x dA 11. ∫

D
(y3 + y5) dA

12. ∫
B
(y3 + y5) dA 13. ∫

D
(y − y3) dA

14. ∫
B
(y − y3) dA

15. Figure 16.9 shows contours of f (x, y). Let R be the

square −0.5 ≤ x ≤ 1, −0.5 ≤ y ≤ 1. Is the integral

∫
R
f dA positive or negative? Explain your reasoning.

−1.0 −0.5 0 0.5 1.0 1.5 2.0
−1.0

−0.5

0

0.5

1.0

1.5

2.0

x

y

−1

0

1

2

2

3

4

Figure 16.9

16. Table 16.6 gives values of f (x, y), the number of

milligrams of mosquito larvae per square meter in a

swamp. If x and y are in meters and R is the rectan-

gle 0 ≤ x ≤ 8, 0 ≤ y ≤ 6, estimate ∫
R
f (x, y) dA. Give

units and interpret your answer.

Table 16.6

y

x

0 4 8

0 1 3 6

3 2 5 9

6 4 9 15

17. Table 16.7 gives values of f (x, y), the depth of volcanic

ash, in meters, after an eruption. If x and y are in kilo-

meters and R is the rectangle 0 ≤ x ≤ 100, 0 ≤ y ≤

100, estimate the volume of volcanic ash in R in km3.

Table 16.7

y

x

0 50 100

0 0.82 0.56 0.43

50 0.63 0.45 0.3

100 0.55 0.44 0.26

18. Table 16.8 gives the density of cacti, f (x, y), in a desert

region, in thousands of cacti per km2. If x and y are in

kilometers and R is the square 0 ≤ x ≤ 30, 0 ≤ y ≤ 30,

estimate the number of cacti in the region R.
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Table 16.8

y

x

0 10 20 30

0 8.5 8.2 7.9 8.1

10 9.5 10.6 10.5 10.1

20 9.3 10.5 10.4 9.5

30 8.3 8.6 9.3 9.1

19. Use four subrectangles to approximate the volume of

the object whose base is the region 0 ≤ x ≤ 4 and

0 ≤ y ≤ 6, and whose height is given by f (x, y) = x+y.

Find an overestimate and an underestimate and average

the two.

20. Figure 16.10 shows the rainfall, in inches, in Tennessee

on May 1–2, 2010.3 Using three contours (red, yellow,

and green), make a rough estimate of how many cubic

miles of rain fell on the state during this time.

Figure 16.10

Strengthen Your Understanding

In Problems 21–22, explain what is wrong with the state-

ment.

21. For all f , the integral ∫
R
f (x, y) dA gives the volume

of the solid under the graph of f over the region R.

22. IfR is a region in the third quadrant where x < 0, y < 0,

then ∫
R
f (x, y) dA is negative.

In Problems 23–24, give an example of:

23. A function f (x, y) and rectangle R such that the Rie-

mann sums obtained using the lower left-hand corner

of each subrectangle are an overestimate.

24. A function f (x, y) whose average value over the square

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 is negative.

Are the statements in Problems 25–34 true or false? Give

reasons for your answer.

25. The double integral ∫
R
f dA is always positive.

26. If f (x, y) = k for all points (x, y) in a region R then

∫
R
f dA = k ⋅ Area(R).

27. If R is the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 then

∫
R
exy dA > 3.

28. If R is the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3 and

S is the rectangle −2 ≤ x ≤ 0,−3 ≤ y ≤ 0, then

∫
R
f dA = − ∫

S
f dA.

29. Let �(x, y) be the population density of a city, in people

per km2. If R is a region in the city, then ∫
R
� dA gives

the total number of people in the region R.

30. If ∫
R
f dA = 0, then f (x, y) = 0 at all points of R.

31. If g(x, y) = kf (x, y), where k is constant, then

∫
R
g dA = k ∫

R
f dA.

32. If f and g are two functions continuous on a region R,

then ∫
R
f ⋅ g dA = ∫

R
f dA ⋅ ∫

R
g dA.

33. If R is the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 2 and S is

the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, then ∫
R
f dA =

2 ∫
S
f dA.

34. If R is the rectangle 2 ≤ x ≤ 4, 5 ≤ y ≤ 9, f (x, y) = 2x

and g(x, y) = x + y, then the average value of f on R

is less than the average value of g on R.

16.2 ITERATED INTEGRALS

In Section 16.1 we approximated double integrals using Riemann sums. In this section we see how

to compute double integrals exactly using one-variable integrals.

The Fox Population Again: Expressing a Double Integral as an Iterated Integral

To estimate the fox population, we computed a sum of the form

Total population ≈
∑

i,j

f (uij , vij)ΔxΔy,

where 1 ≤ i ≤ n and 1 ≤ j ≤ m and the values f (uij , vij) can be arranged as in Table 16.9.

3www.srh.noaa.gov/images/ohx/rainfall/TN_May2010_rainfall_map.png, accessed June 13, 2016.
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Table 16.9 Estimates for fox population densities for n = m = 6

0.0 0.0 0.2 0.7 1.2 1.2

0.0 0.0 0.0 0.0 0.1 1.6

0.0 0.0 0.5 1.4 1.1 1.6

0.0 0.0 1.5 1.8 1.5 1.3

0.0 1.1 2.0 1.4 1.0 0.0

0.0 1.0 0.6 1.2 0.0 0.0

For any values of n and m, we can either add across the rows first or add down the columns first.

If we add rows first, we can write the sum in the form

Total population ≈

m
∑

j=1

(

n
∑

i=1

f (uij , vij)Δx

)

Δy.

The inner sum,

n
∑

i=1

f (uij , vij) Δx, approximates the integral ∫
180

0
f (x, vij) dx. Thus, we have

Total population ≈

m
∑

j=1

(

∫

180

0

f (x, vij) dx

)

Δy.

The outer Riemann sum approximates another integral, this time with integrand ∫
180

0
f (x, y) dx,

which is a function of y. Thus, we can write the total population in terms of nested, or iterated, one-

variable integrals:

Total population =
∫

150

0

(

∫

180

0

f (x, y) dx

)

dy.

Since the total population is represented by ∫
R
f dA, this suggests the method of computing

double integrals in the following theorem:4

Theorem 16.1: Writing a Double Integral as an Iterated Integral

If R is the rectangle a ≤ x ≤ b, c ≤ y ≤ d and f is a continuous function on R, then the

integral of f over R exists and is equal to the iterated integral

∫R
f dA =

∫

y=d

y=c

(

∫

x=b

x=a

f (x, y) dx

)

dy.

The expression ∫
y=d

y=c

(

∫
x=b

x=a
f (x, y) dx

)

dy can be written ∫
d

c
∫
b

a
f (x, y) dx dy.

To evaluate the iterated integral, first perform the inside integral with respect to x, holding y

constant; then integrate the result with respect to y.

Example 1 A building is 8 meters wide and 16 meters long. It has a flat roof that is 12 meters high at one corner

and 10 meters high at each of the adjacent corners. What is the volume of the building?

Solution If we put the high corner on the z-axis, the long side along the y-axis, and the short side along the

x-axis, as in Figure 16.11, then the roof is a plane with z-intercept 12, and x slope (−2)∕8 = −1∕4,

and y slope (−2)∕16 = −1∕8. Hence, the equation of the roof is

z = 12 −
1

4
x −

1

8
y.

4For a proof, see M. Spivak, Calculus on Manifolds, pp. 53 and 58 (New York: Benjamin, 1965).
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The volume is given by the double integral

Volume =
∫R

(12 −
1

4
x −

1

8
y) dA,

where R is the rectangle 0 ≤ x ≤ 8, 0 ≤ y ≤ 16. Setting up an iterated integral, we get

Volume =
∫

16

0 ∫

8

0

(12 −
1

4
x −

1

8
y) dx dy.

The inside integral is

∫

8

0

(12 −
1

4
x −

1

8
y) dx =

(

12x −
1

8
x2 −

1

8
xy

)

|

|

|

|

x=8

x=0

= 88 − y.

Then the outside integral gives

Volume =
∫

16

0

(88 − y) dy = (88y−
1

2
y2)

|

|

|

|

16

0

= 1280.

The volume of the building is 1280 cubic meters.

x (m)
y (m)

z (m)

✻

❄

10

✻

❄
12

✻

❄

10

✛

✛

16 ✛

✛

8

Figure 16.11: A slant-roofed building Figure 16.12: Cross-section of a building

Notice that the inner integral ∫
8

0
(12 −

1

4
x −

1

8
y) dx in Example 1 gives the area of the cross

section of the building perpendicular to the y-axis in Figure 16.12.

The iterated integral ∫
16

0
∫
8

0
(12 −

1

4
x −

1

8
y) dxdy thus calculates the volume by adding the

volumes of thin cross-sectional slabs.

The Order of Integration

In computing the fox population, we could have chosen to add columns (fixed x) first, instead of the

rows. This leads to an iterated integral where x is constant in the inner integral instead of y. Thus,

∫R
f (x, y) dA =

∫

b

a

(

∫

d

c

f (x, y) dy

)

dx

where R is the rectangle a ≤ x ≤ b and c ≤ y ≤ d.

For any function we are likely to meet, it does not matter in which order we integrate over a

rectangular region R; we get the same value for the double integral either way.

∫R
f dA =

∫

d

c

(

∫

b

a

f (x, y) dx

)

dy =
∫

b

a

(

∫

d

c

f (x, y) dy

)

dx
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Example 2 Compute the volume of Example 1 as an iterated integral by integrating with respect to y first.

Solution Rewriting the integral, we have

Volume =
∫

8

0

(

∫

16

0

(12 −
1

4
x −

1

8
y) dy

)

dx =
∫

8

0

(

(12y−
1

4
xy −

1

16
y2)

|

|

|

|

y=16

y=0

)

dx

=
∫

8

0

(176 − 4x) dx = (176x− 2x2)
|

|

|

|

8

0

= 1280 meter3.

Iterated Integrals Over Non-Rectangular Regions

Example 3 The density at the point (x, y) of a triangular metal plate, as shown in Figure 16.13, is �(x, y). Express

its mass as an iterated integral.

y = 2 − 2x

2

1

y

x

Figure 16.13: A triangular metal plate with density �(x, y) at the point (x, y)

Solution Approximate the triangular region using a grid of small rectangles of sides Δx and Δy. The mass of

one rectangle is given by

Mass of rectangle ≈ Density ⋅ Area ≈ �(x, y)ΔxΔy.

Summing over all rectangles gives a Riemann sum which approximates the double integral:

Mass =
∫R

�(x, y) dA,

where R is the triangle. We want to compute this integral using an iterated integral.

Think about how the iterated integral over the rectangle a ≤ x ≤ b, c ≤ y ≤ d works:

∫

b

a ∫

d

c

f (x, y) dy dx.

The inside integral with respect to y is along vertical strips which begin at the horizontal line y = c

and end at the line y = d. There is one such strip for each x between x = a and x = b. (See

Figure 16.14.)

For the triangular region in Figure 16.13, the idea is the same. The only difference is that the

individual vertical strips no longer all go from y = c to y = d. The vertical strip that starts at the

point (x, 0) ends at the point (x, 2 − 2x), because the top edge of the triangle is the line y = 2 − 2x.

See Figure 16.15. On this vertical strip, y goes from 0 to 2 − 2x. Hence, the inside integral is

∫

2−2x

0

�(x, y) dy.
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a b

c

d

x

y

x

Figure 16.14: Integrating over a

rectangle using vertical strips

(x, 0)

(x, 2 − 2x)

y

x
1

2

Figure 16.15: Integrating over a

triangle using vertical strips

1

2

(0, y)
(1 −

1

2
y, y)

x

y

Figure 16.16: Integrating over a

triangle using horizontal strips

Finally, since there is a vertical strip for each x between 0 and 1, the outside integral goes from

x = 0 to x = 1. Thus, the iterated integral we want is

Mass =
∫

1

0 ∫

2−2x

0

�(x, y) dy dx.

We could have chosen to integrate in the opposite order, keeping y fixed in the inner integral

instead of x. The limits are formed by looking at horizontal strips instead of vertical ones, and ex-

pressing the x-values at the end points in terms of y. See Figure 16.16. To find the right endpoint

of the strip, we use the equation of the top edge of the triangle in the form x = 1 −
1

2
y. Thus, a

horizontal strip goes from x = 0 to x = 1 −
1

2
y. Since there is a strip for every y from 0 to 2, the

iterated integral is

Mass =
∫

2

0 ∫

1−
1

2
y

0

�(x, y) dx dy.

Limits on Iterated Integrals

• The limits on the outer integral must be constants.

• The limits on the inner integral can involve only the variable in the outer integral. For

example, if the inner integral is with respect to x, its limits can be functions of y.

Example 4 Find the mass M of a metal plate R bounded by y = x and y = x2, with density given by �(x, y) =

1 + xy kg∕meter2. (See Figure 16.17.)

y = x2

y = x

(1, 1)
y (meters)

x (meters)

Figure 16.17: A metal plate with density �(x, y)

curgus
Red T
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Solution The mass is given by

M =
∫R

�(x, y) dA.

We integrate along vertical strips first; this means we do the y integral first, which goes from the

bottom boundary y = x2 to the top boundary y = x. The left edge of the region is at x = 0 and the

right edge is at the intersection point of y = x and y = x2, which is (1, 1). Thus, the x-coordinate of

the vertical strips can vary from x = 0 to x = 1, and so the mass is given by

M =
∫

1

0 ∫

x

x2
�(x, y) dy dx =

∫

1

0 ∫

x

x2
(1 + xy) dy dx.

Calculating the inner integral first gives

M =
∫

1

0 ∫

x

x2
(1 + xy) dy dx =

∫

1

0

(

y + x
y2

2

)

|

|

|

|

y=x

y=x2
dx

=
∫

1

0

(

x − x2 +
x3

2
−

x5

2

)

dx =

(

x2

2
−

x3

3
+

x4

8
−

x6

12

)

|

|

|

|

1

0

=
5

24
= 0.208 kg.

Example 5 A semicircular city of radius 3 km borders the ocean on the straight side. Find the average distance

from points in the city to the ocean.

Solution Think of the ocean as everything below the x-axis in the xy-plane and think of the city as the upper

half of the circular disk of radius 3 bounded by x2 + y2 = 9. (See Figure 16.18.)

(
√

9 − y2, y)(−
√

9 − y2, y)

(x, 0)

(x,
√

9 − x2)
x2 + y2 = 9

x

y

−3 3

3

Figure 16.18: The city by the ocean showing a typical vertical strip and a typical horizontal strip

The distance from any point (x, y) in the city to the ocean is the vertical distance to the x-axis,

namely y. Thus, we want to compute

Average distance =
1

Area(R) ∫R
y dA,

where R is the region between the upper half of the circle x2 + y2 = 9 and the x-axis. The area of R

is �32∕2 = 9�∕2.

To compute the integral, let’s take the inner integral with respect to y. A vertical strip goes from

the x-axis, namely y = 0, to the semicircle. The upper limit must be expressed in terms of x, so we

solve x2 + y2 = 9 to get y =
√

9 − x2. Since there is a strip for every x from −3 to 3, the integral is:

∫R
y dA =

∫

3

−3

⎛

⎜

⎜

⎝

∫

√

9−x2

0

y dy

⎞

⎟

⎟

⎠

dx =
∫

3

−3

⎛

⎜

⎜

⎝

y2

2

|

|

|

|

y=
√

9−x2

y=0

⎞

⎟

⎟

⎠

dx

=
∫

3

−3

1

2
(9 − x2) dx =

1

2

(

9x −
x3

3

)

|

|

|

|

3

−3

=
1

2
(18 − (−18)) = 18.
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Therefore, the average distance is 18∕(9�∕2) = 4∕� = 1.273 km.

What if we choose the inner integral with respect to x? Then we get the limits by looking at

horizontal strips, not vertical, and we solve x2 + y2 = 9 for x in terms of y. We get x = −
√

9 − y2

at the left end of the strip and x =
√

9 − y2 at the right. There is a strip for every y from 0 to 3, so

∫R
y dA =

∫

3

0

(

∫

√

9−y2

−
√

9−y2
y dx

)

dy =
∫

3

0

⎛

⎜

⎜

⎝

yx
|

|

|

|

x=
√

9−y2

x=−
√

9−y2

⎞

⎟

⎟

⎠

dy =
∫

3

0

2y
√

9 − y2 dy

= −
2

3
(9 − y2)3∕2

|

|

|

|

3

0

= −
2

3
(0 − 27) = 18.

We get the same result as before. The average distance to the ocean is (2∕(9�))18 = 4∕� = 1.273 km.

In the examples so far, a region was given and the problem was to determine the limits for an

iterated integral. Sometimes the limits are known and we want to determine the region.

Example 6 Sketch the region of integration for the iterated integral
∫

6

0 ∫

2

x∕3

x
√

y3 + 1 dy dx.

Solution The inner integral is with respect to y, so we imagine the region built of vertical strips. The bottom

of each strip is on the line y = x∕3, and the top is on the horizontal line y = 2. Since the limits of the

outer integral are 0 and 6, the whole region is contained between the vertical lines x = 0 and x = 6.

Notice that the lines y = 2 and y = x∕3 meet where x = 6. See Figure 16.19.

6
x

y

(6, 2)

y = x∕3

y = 2
2

Figure 16.19: The region of integration for Example 6, showing the vertical strip

Reversing the Order of Integration

It is sometimes helpful to reverse the order of integration in an iterated integral. An integral which

is difficult or impossible with the integration in one order can be quite straightforward in the other.

The next example is such a case.

Example 7 Evaluate
∫

6

0 ∫

2

x∕3

x
√

y3 + 1 dy dx using the region sketched in Figure 16.19.

Solution Since
√

y3 + 1 has no elementary antiderivative, we cannot calculate the inner integral symbolically.

We try reversing the order of integration. From Figure 16.19, we see that horizontal strips go from

x = 0 to x = 3y and that there is a strip for every y from 0 to 2. Thus, when we change the order of

integration we get

∫

6

0 ∫

2

x∕3

x
√

y3 + 1 dy dx =
∫

2

0 ∫

3y

0

x
√

y3 + 1 dx dy.

Now we can at least do the inner integral because we know the antiderivative of x. What about the
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outer integral?

∫

2

0 ∫

3y

0

x
√

y3 + 1 dx dy =
∫

2

0

(

x2

2

√

y3 + 1

)

|

|

|

|

x=3y

x=0

dy =
∫

2

0

9y2

2
(y3 + 1)1∕2 dy

= (y3 + 1)3∕2
|

|

|

|

2

0

= 27 − 1 = 26.

Thus, reversing the order of integration made the integral in the previous problem much easier.

Notice that to reverse the order it is essential first to sketch the region over which the integration is

being performed.

Exercises and Problems for Section 16.2 Online Resource: Additional Problems for Section 16.2
EXERCISES

In Exercises 1–4, sketch the region of integration.

1.
∫

�

0 ∫

x

0

y sinx dy dx 2.
∫

1

0 ∫

y

y2

xy dx dy

3.
∫

2

0 ∫

y2

0

y2x dxdy 4.
∫

1

0 ∫

cos �x

x−2

y dy dx

For Exercises 5–12, evaluate the integral.

5.

∫

3

0 ∫

4

0

(4x + 3y) dxdy

6.

∫

2

0 ∫

3

0

(x2 + y2) dy dx

7.
∫

3

0 ∫

2

0

6xy dy dx 8.
∫

1

0 ∫

2

0

x2y dy dx

9.
∫

1

0 ∫

1

0

yexy dx dy 10.
∫

2

0 ∫

y

0

y dx dy

11.
∫

3

0 ∫

y

0

sin xdx dy 12.
∫

�∕2

0 ∫

sinx

0

x dy dx

For Exercises 13–20, sketch the region of integration and

evaluate the integral.

13.
∫

3

1 ∫

4

0

ex+y dy dx 14.
∫

2

0 ∫

x

0

ex
2
dy dx

15.
∫

5

1 ∫

2x

x

sinx dy dx 16.
∫

4

1 ∫

y

√

y

x2y3 dxdy

17.
∫

2

1 ∫

3y

y

xy dx dy 18.
∫

1

0 ∫

√

x

x

30x dy dx

19.
∫

2

0 ∫

2x

0

xex
3
dy dx 20.

∫

1

0 ∫

1+x2

1

x
√

y
dy dx

In Exercises 21–26, write ∫
R
fdA as an iterated integral for

the shaded region R.

21.

1 2 3 4
0

1

2

x

y 22.

4

12

x

y

23.

−1 1 2 3

−2

1

x

y 24.

3 5

6

x

y

25.

1 2 3
0

1

2

3

x

y 26.

1 2 3 4
0

1

2

x

y

For Exercises 27–28, write ∫
R
fdA as an iterated integral in

two different ways for the shaded region R.

27.

1 2
0

1

2

x

y 28.

1 2
0

1

2

x

y

curgus
Red T

curgus
Red T
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For Exercises 29–33, evaluate the integral.

29. ∫
R

√

x + y dA, where R is the rectangle 0 ≤ x ≤ 1,

0 ≤ y ≤ 2.

30. The integral in Exercise 29 using the other order of in-

tegration.

31. ∫
R
(5x2 + 1) sin 3y dA, where R is the rectangle −1 ≤

x ≤ 1, 0 ≤ y ≤ �∕3.

32. ∫
R
xy dA, where R is the triangle x+y ≤ 1, x ≥ 0, y ≥

0.

33. ∫
R
(2x + 3y)2 dA, where R is the triangle with vertices

at (−1, 0), (0, 1), and (1, 0).

PROBLEMS

In Problems 34–37, integrate f (x, y) = xy over the regionR.

34.

1

2

R
x

y 35.

−1

1

R

x

y

36.

2

R

(1, 1)

x

y 37.

2

1

R

x

y

38. (a) Use four subrectangles to approximate the volume

of the object whose base is the region 0 ≤ x ≤ 4

and 0 ≤ y ≤ 6, and whose height is given by

f (x, y) = xy. Find an overestimate and an under-

estimate and average the two.

(b) Integrate to find the exact volume of the three-

dimensional object described in part (a).

For Problems 39–42, sketch the region of integration then

rewrite the integral with the order of integration reversed.

39.
∫

3

0 ∫

6

2y

f (x, y) dx dy

40.
∫

2

0 ∫

√

4−x2

0

f (x, y) dy dx

41.
∫

3

−3 ∫

9−x2

0

f (x, y) dy dx

42.
∫

2

0 ∫

2−y

y−2

f (x, y) dx dy

In Problems 43–50, evaluate the integral by reversing the or-

der of integration.

43.
∫

1

0 ∫

1

y

ex
2
dx dy 44.

∫

1

0 ∫

1

y

sin (x2) dx dy

45.
∫

1

0 ∫

1

√

y

√

2 + x3 dx dy 46.
∫

3

0 ∫

9

y2

y sin(x2) dxdy

47.
∫

1

0 ∫

e

ey

x

ln x
dx dy 48.

∫

1

0 ∫

1

x

cos(y2) dy dx

49.
∫

8

0 ∫

2

3
√

y

1

1 + x4
dx dy 50.

∫

1

0 ∫

x

0

e2y−y
2
dy dx

51. Each of the integrals (I)–(VI) takes one of two distinct

values. Without evaluating, group them by value.

I.
∫

5

0 ∫

10

0

xy2 dx dy II.
∫

5

0 ∫

10

0

xy2 dy dx

III.
∫

10

0 ∫

5

0

xy2 dxdy IV.
∫

10

0 ∫

5

0

xy2 dy dx

V.
∫

5

0 ∫

10

0

uv2 du dv VI.
∫

5

0 ∫

10

0

uv2 dv du

52. Find the volume under the graph of the function

f (x, y) = 6x2y over the region shown in Figure 16.20.

1 2 3 4
0

2

4

6

8

x

y

Figure 16.20

53. (a) Find the volume below the surface z = x2 +y2 and

above the xy-plane for −1 ≤ x ≤ 1,−1 ≤ y ≤ 1.

(b) Find the volume above the surface z = x2 + y2

and below the plane z = 2 for −1 ≤ x ≤ 1,

−1 ≤ y ≤ 1.

54. Compute the integral

∫ ∫
R

(2x2 + y) dA,

where R is the triangular region with vertices at (0, 1),

(−2, 3) and (2, 3).

55. (a) Sketch the region in the xy-plane bounded by the

x-axis, y = x, and x + y = 1.

(b) Express the integral of f (x, y) over this region in

terms of iterated integrals in two ways. (In one, use

dx dy; in the other, use dy dx.)

(c) Using one of your answers to part (b), evaluate the

integral exactly with f (x, y) = x.

curgus
Red T

curgus
Red T



856 Chapter 16 INTEGRATING FUNCTIONS OF SEVERAL VARIABLES

56. Let f (x, y) = x2ex
2

and let R be the triangle bounded

by the lines x = 3, x = y∕2, and y = x in the xy-plane.

(a) Express ∫
R
f dA as a double integral in two differ-

ent ways.

(b) Evaluate one of them.

57. Find the average value of f (x, y) = x2 +4y on the rect-

angle 0 ≤ x ≤ 3 and 0 ≤ y ≤ 6.

58. Find the average value of f (x, y) = xy2 on the rectangle

0 ≤ x ≤ 4, 0 ≤ y ≤ 3.

59. Figure 16.21 shows two metal plates carrying electri-

cal charges. The charge density (in coulombs per square

meter) of each at the point (x, y) is �(x, y) = 6x+ 6 for

x, y in meters.

(a) Without calculation, decide which plate carries a

greater total charge, and explain your reasoning.

(b) Find the total charge on both plates, and compare

to your answer from part (a).

1

1

x

y

Plate 1

1

1

x

y

Plate 2

Figure 16.21

60. The population density in people per km2 for the

trapezoid-shaped town in Figure 16.22 for x, y in kilo-

meters is �(x, y) = 100x + 200y. Find the town’s pop-

ulation.

0 6

3

6

x

y

Figure 16.22

61. The quarter-disk-shaped metal plate in Figure 16.23 has

radius 3 and density �(x, y) = 2y gm/cm2, with x, y in

cm. Find the mass of the plate.

3

3

x

y

Figure 16.23

In Problems 62–63 set up, but do not evaluate, an iterated

integral for the volume of the solid.

62. Under the graph of f (x, y) = 25 − x2 − y2 and above

the xy-plane.

63. Below the graph of f (x, y) = 25 − x2 − y2 and above

the plane z = 16.

64. A solid with flat base in the xy-plane is bounded by the

vertical planes y = 0 and y − x = 4, and the slanted

plane 2x + y + z = 4.

(a) Draw the base of the solid.

(b) Set up, but do not evaluate, an iterated integral for

the volume of the solid.

In Problems 65–69, find the volume of the solid region.

65. Under the graph of f (x, y) = xy and above the square

0 ≤ x ≤ 2, 0 ≤ y ≤ 2 in the xy-plane.

66. Under the graph of f (x, y) = x2 + y2 and above the

triangle 0 ≤ y ≤ x, 0 ≤ x ≤ 1.

67. Under the graph of f (x, y) = x+y and above the region

y2 ≤ x, 0 ≤ x ≤ 9, y ≥ 0.

68. Under the graph of 2x + y + z = 4 in the first octant.

69. The solid region R bounded by the coordinate planes

and the graph of ax + by + cz = 1. Assume a, b, and

c > 0.

70. If R is the region x + y ≥ a, x2 + y2 ≤ a2, with a > 0,

evaluate the integral

∫
R

xy dA.

71. The region W lies below the surface f (x, y) =

2e−(x−1)
2−y2 and above the disk x2 + y2 ≤ 4 in the xy-

plane.

(a) Describe in words the contours of f , using

f (x, y) = 1 as an example.

(b) Write an integral giving the area of the cross-

section of W in the plane x = 1.

(c) Write an iterated double integral giving the volume

of W .

72. Find the average distance to the x-axis for points in the

region in the first quadrant bounded by the x-axis and

the graph of y = x − x2.

73. Give the contour diagram of a function f whose aver-

age value on the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 is

(a) Greater than the average of the values of f at the

four corners of the square.

(b) Less than the average of the values of f at the four

corners of the square.

74. The function f (x, y) = ax+ by has an average value of

20 on the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3.

(a) What can you say about the constants a and b?
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(b) Find two different choices for f that have average

value 20 on the rectangle, and give their contour

diagrams on the rectangle.

75. The function f (x, y) = ax2 + bxy+ cy2 has an average

value of 20 on the square 0 ≤ x ≤ 2, 0 ≤ y ≤ 2.

(a) What can you say about the constants a, b, and c?

(b) Find two different choices for f that have average

value 20 on the square, and give their contour dia-

grams on the square.

Strengthen Your Understanding

In Problems 76–77, explain what is wrong with the state-

ment.

76. ∫
1

0
∫

x

0
f (x, y) dy dx = ∫

1

0
∫

y

0
f (x, y) dx dy

77. ∫
1

0
∫

y

0
xy dx dy = ∫

y

0
∫

1

0
xy dy dx

In Problems 78–80, give an example of:

78. An iterated double integral, with limits of integration,

giving the volume of a cylinder standing vertically with

a circular base in the xy-plane.

79. A nonconstant function, f , whose integral is 4 over the

triangular region with vertices (0, 0), (1, 0), (1, 1).

80. A double integral representing the volume of a triangu-

lar prism of base area 6.

Are the statements in Problems 81–88 true or false? Give

reasons for your answer.

81. The iterated integral ∫
1

0
∫

12

5
f dx dy is computed over

the rectangle 0 ≤ x ≤ 1, 5 ≤ y ≤ 12.

82. If R is the region inside the triangle with vertices

(0, 0), (1, 1) and (0, 2), then the double integral ∫
R
f dA

can be evaluated by an iterated integral of the form

∫
2

0
∫

1

0
f dx dy.

83. The region of integration of the iterated integral

∫
2

1
∫

x3

x2
f dy dx lies completely in the first quadrant

(that is, x ≥ 0, y ≥ 0).

84. If the limits a, b, c and d in the iterated integral

∫
b

a
∫

d

c
f dy dx are all positive, then the value of

∫
b

a
∫

d

c
f dy dx is also positive.

85. If f (x, y) is a function of y only, then ∫
b

a
∫

1

0
f dxdy =

∫
b

a
fdy.

86. If R is the region inside a circle of radius a, centered at

the origin, then ∫
R
f dA = ∫

a

−a
∫

√

a2−x2

0
f dy dx.

87. If f (x, y) = g(x) ⋅ ℎ(y), where g and ℎ are single-

variable functions, then

∫

b

a
∫

d

c

f dy dx =

(

∫

b

a

g(x) dx

)

⋅

(

∫

d

c

ℎ(y) dy

)

.

88. If f (x, y) = g(x) + ℎ(y), where g and ℎ are single-

variable functions, then

∫

b

a
∫

d

c

f dx dy =

(

∫

b

a

g(x) dx

)

+

(

∫

d

c

ℎ(y) dy

)

.

16.3 TRIPLE INTEGRALS

A continuous function of three variables can be integrated over a solid region W in 3-space in the

same way as a function of two variables is integrated over a flat region in 2-space. Again, we start

with a Riemann sum. First we subdivide W into smaller regions, then we multiply the volume of

each region by a value of the function in that region, and then we add the results. For example, if W

is the box a ≤ x ≤ b, c ≤ y ≤ d, p ≤ z ≤ q, then we subdivide each side into n, m, and l pieces,

thereby chopping W into nml smaller boxes, as shown in Figure 16.24.

Figure 16.24: Subdividing a three-dimensional box

The volume of each smaller box is

ΔV = ΔxΔyΔz,
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where Δx = (b − a)∕n, and Δy = (d − c)∕m, and Δz = (q − p)∕l. Using this subdivision, we pick

a point (uijk, vijk, wijk) in the ijk-th small box and construct a Riemann sum
∑

i,j,k

f (uijk, vijk, wijk) ΔV .

If f is continuous, as Δx, Δy, andΔz approach 0, this Riemann sum approaches the definite integral,

∫W
f dV , called a triple integral, which is defined as

∫W
f dV = lim

Δx,Δy,Δz→0

∑

i,j,k

f (uijk, vijk, wijk) ΔxΔyΔz.

As in the case of a double integral, we can evaluate this integral as an iterated integral:

Triple integral as an iterated integral

∫W
f dV =

∫

q

p

(

∫

d

c

(

∫

b

a

f (x, y, z) dx

)

dy

)

dz,

where y and z are treated as constants in the innermost (dx) integral, and z is treated as a

constant in the middle (dy) integral. Other orders of integration are possible.

Example 1 A cube C has sides of length 4 cm and is made of a material of variable density. If one corner is at

the origin and the adjacent corners are on the positive x, y, and z axes, then the density at the point

(x, y, z) is �(x, y, z) = 1 + xyz gm/cm3. Find the mass of the cube.

Solution Consider a small piece ΔV of the cube, small enough so that the density remains close to constant

over the piece. Then

Mass of small piece = Density ⋅ Volume ≈ �(x, y, z) ΔV .

To get the total mass, we add the masses of the small pieces and take the limit as ΔV → 0. Thus,

the mass is the triple integral

M =
∫C

� dV =
∫

4

0 ∫

4

0 ∫

4

0

(1 + xyz) dx dy dz =
∫

4

0 ∫

4

0

(

x +
1

2
x2yz

)

|

|

|

|

x=4

x=0

dy dz

=
∫

4

0 ∫

4

0

(4 + 8yz) dy dz =
∫

4

0

(

4y + 4y2z
) |

|

|

|

y=4

y=0

dz =
∫

4

0

(16 + 64z) dz = 576 gm.

Example 2 Express the volume of the building described in Example 1 on page 848 as a triple integral.

Solution The building is given by 0 ≤ x ≤ 8, 0 ≤ y ≤ 16, and 0 ≤ z ≤ 12 − x∕4 − y∕8. (See Figure 16.25.)

To find its volume, divide it into small cubes of volume ΔV = ΔxΔyΔz and add. First, make a

vertical stack of cubes above the point (x, y, 0). This stack goes from z = 0 to z = 12 − x∕4 − y∕8,

so

Volume of vertical stack ≈
∑

z

ΔV =
∑

z

ΔxΔyΔz =

(

∑

z

Δz

)

ΔxΔy.



16.3 TRIPLE INTEGRALS 859

Next, line up these stacks parallel to the y-axis to form a slice from y = 0 to y = 16. So

Volume of slice ≈

(

∑

y

∑

z

ΔzΔy

)

Δx.

Finally, line up the slices along the x-axis from x = 0 to x = 8 and add up their volumes, to get

Volume of building ≈
∑

x

∑

y

∑

z

ΔzΔyΔx.

Thus, in the limit,

Volume of building =
∫

8

0 ∫

16

0 ∫

12−x∕4−y∕8

0

1 dz dy dx.

x

y

z

(0, 16, 10)

(0, 16, 0)

(8, 16, 0)

✠

(8, 16, 8)

✠

(x, y, 12 −
1

4
x −

1

8
y)

(x, y, 0)
✛

✛

✛

✛

8

16

(0, 0, 12)

(8, 0, 10)

(8, 0, 8)

(8, 0, 0)

x

y

z

Δx

Δy

✻

❄
Δz

(8, 0, 10)

(0, 0, 12)

8

16

Figure 16.25: Volume of building (shown to left) divided into blocks and slabs for a triple integral

The preceding examples show that the triple integral has interpretations similar to the double

integral:

• If �(x, y, z) is density, then
∫W

� dV is the total quantity in the solid region W .

•
∫W

1 dV is the volume of the solid region W .

Example 3 Set up an iterated integral to compute the mass of the solid cone bounded by z =
√

x2 + y2 and

z = 3, if the density is given by �(x, y, z) = z.

Solution We break the cone in Figure 16.26 into small cubes of volumeΔV = ΔxΔyΔz, on which the density

is approximately constant, and approximate the mass of each cube by �(x, y, z) ΔxΔyΔz. Stacking

the cubes vertically above the point (x, y, 0), starting on the cone at height z =
√

x2 + y2 and going

up to z = 3, tells us that the inner integral is

∫

3

√

x2+y2
�(x, y, z) dz =

∫

3

√

x2+y2
z dz.
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There is a stack for every point in the xy-plane in the shadow of the cone. The cone z =
√

x2 + y2

intersects the horizontal plane z = 3 in the circle x2 + y2 = 9, so there is a stack for all (x, y) in the

region x2 + y2 ≤ 9. Lining up the stacks parallel to the y-axis gives a slice from y = −
√

9 − x2 to

y =
√

9 − x2, for each fixed value of x. Thus, the limits on the middle integral are

∫

√

9−x2

−
√

9−x2 ∫

3

√

x2+y2
z dz dy.

Finally, there is a slice for each x between −3 and 3, so the integral we want is

Mass =
∫

3

−3 ∫

√

9−x2

−
√

9−x2 ∫

3

√

x2+y2
z dz dy dx.

Notice that setting up the limits on the two outer integrals was just like setting up the limits for

a double integral over the region x2 + y2 ≤ 9.

Figure 16.26: The cone z =
√

x2 + y2 with its

shadow on the xy-plane

As the previous example illustrates, for a region W contained between two surfaces, the inner-

most limits correspond to these surfaces. The middle and outer limits ensure that we integrate over

the “shadow” of W in the xy-plane.

Limits on Triple Integrals

∙ The limits for the outer integral are constants.

∙ The limits for the middle integral can involve only one variable (that in the outer integral).

∙ The limits for the inner integral can involve two variables (those on the two outer integrals).

Exercises and Problems for Section 16.3 Online Resource: Additional Problems for Section 16.3
EXERCISES

In Exercises 1–4, find the triple integrals of the function over

the region W .

1. f (x, y, z) = x2 + 5y2 − z, W is the rectangular box

0 ≤ x ≤ 2, −1 ≤ y ≤ 1, 2 ≤ z ≤ 3.

2. ℎ(x, y, z) = ax + by + cz, W is the rectangular box

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 2.

3. f (x, y, z) = sin x cos(y+ z), W is the cube 0 ≤ x ≤ �,

0 ≤ y ≤ �, 0 ≤ z ≤ �.

4. f (x, y, z) = e−x−y−z, W is the rectangular box with cor-

ners at (0, 0, 0), (a, 0, 0), (0, b, 0), and (0, 0, c).
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Sketch the region of integration in Exercises 5–13.

5.
∫

1

0 ∫

1

−1 ∫

√

1−x2

0

f (x, y, z) dzdx dy

6.
∫

1

0 ∫

1

−1 ∫

√

1−z2

0

f (x, y, z) dy dz dx

7.
∫

1

0 ∫

1

−1 ∫

√

1−x2

−
√

1−x2
f (x, y, z) dzdx dy

8.
∫

1

−1 ∫

1

0 ∫

√

1−z2

−
√

1−z2
f (x, y, z) dy dz dx

9.
∫

1

−1 ∫

√

1−x2

−
√

1−x2 ∫

√

1−x2−z2

0

f (x, y, z) dy dz dx

10.
∫

1

0 ∫

√

1−z2

−
√

1−z2 ∫

√

1−x2−z2

0

f (x, y, z) dy dx dz

11.
∫

1

0 ∫

√

1−y2

0 ∫

√

1−x2−y2

−
√

1−x2−y2
f (x, y, z) dz dx dy

12.
∫

1

0 ∫

√

1−z2

−
√

1−z2 ∫

√

1−y2−z2

−
√

1−y2−z2
f (x, y, z) dxdy dz

13.
∫

1

0 ∫

√

1−z2

0 ∫

√

1−x2−z2

−
√

1−x2−z2
f (x, y, z) dy dx dz

In Exercises 14–15, for x, y and z in meters, what does the

integral over the solid region E represent? Give units.

14.
∫
E

1 dV

15.
∫
E

�(x, y, z) dV , where �(x, y, z) is density, in kg/m3.

PROBLEMS

In Problems 16–20, decide whether the integrals are positive,

negative, or zero. Let S be the solid sphere x2 +y2 +z2 ≤ 1,

and T be the top half of this sphere (with z ≥ 0), and B be

the bottom half (with z ≤ 0), and R be the right half of the

sphere (with x ≥ 0), and L be the left half (with x ≤ 0).

16.
∫
T

ez dV 17.
∫
B

ez dV 18.
∫
S

sin z dV

19.
∫
T

sin z dV 20.
∫
R

sin z dV

Let W be the solid cone bounded by z =
√

x2 + y2 and

z = 2. For Problems 21–29, decide (without calculating its

value) whether the integral is positive, negative, or zero.

21. ∫
W
y dV 22. ∫

W
x dV

23. ∫
W
z dV 24. ∫

W
xy dV

25. ∫
W
xyz dV 26. ∫

W
(z − 2) dV

27. ∫
W

√

x2 + y2 dV 28. ∫
W
e−xyz dV

29. ∫
W
(z −

√

x2 + y2) dV

In Problems 30–34, let W be the solid cylinder bounded by

x2 + y2 = 1, z = 0, and z = 2. Decide (without calculating

its value) whether the integral is positive, negative, or zero.

30. ∫
W
x dV 31. ∫

W
z dV

32. ∫
W
(x2 + y2 − 2) dV 33. ∫

W
(z − 1) dV

34. ∫
W
e−y dV

35. Find the volume of the region bounded by the planes

z = 3y, z = y, y = 1, x = 1, and x = 2.

36. Find the volume of the region bounded by z = x2,

0 ≤ x ≤ 5, and the planes y = 0, y = 3, and z = 0.

37. Find the volume of the region in the first octant bounded

by the coordinate planes and the surface x+ y+ z = 2.

38. A trough with triangular cross-section lies along the x-

axis for 0 ≤ x ≤ 10. The slanted sides are given by

z = y and z = −y for 0 ≤ z ≤ 1 and the ends by x = 0

and x = 10, where x, y, z are in meters. The trough

contains a sludge whose density at the point (x, y, z) is

� = e−3x kg per m3.

(a) Express the total mass of sludge in the trough in

terms of triple integrals.

(b) Find the mass.

39. Find the volume of the region bounded by z = x+y, z =

10, and the planes x = 0, y = 0.

In Problems 40–45, write a triple integral, including limits

of integration, that gives the specified volume.

40. Between z = x + y and z = 1 + 2x + 2y and above

0 ≤ x ≤ 1, 0 ≤ y ≤ 2.

41. Between the paraboloid z = x2 + y2 and the sphere

x2 + y2 + z2 = 4 and above the disk x2 + y2 ≤ 1.

42. Between 2x+2y+z = 6 and 3x+4y+z = 6 and above

x + y ≤ 1, x ≥ 0, y ≥ 0.

43. Under the sphere x2 +y2 +z2 = 9 and above the region

between y = x and y = 2x − 2 in the xy-plane in the

first quadrant.

44. Between the top portion of the sphere x2 + y2 + z2 = 9

and the plane z = 2.

45. Under the sphere x2 +y2 +z2 = 4 and above the region

x2 + y2 ≤ 4, 0 ≤ x ≤ 1, 0 ≤ y ≤ 2 in the xy-plane.

curgus
Red T

curgus
Red T

curgus
Red T
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In Problems 46–49, write limits of integration for the inte-

gral ∫
W
f (x, y, z) dV where W is the quarter or half sphere

or cylinder shown.

46.

x y

z

r
1

r

47.

1
2

2

x

y

z

48.

r
r

r

x
y

z 49.

r
r

r

x

y

z

50. Find the volume of the region between the plane z = x

and the surface z = x2, and the planes y = 0, and y = 3.

51. Find the volume of the region bounded by z = x + y,

0 ≤ x ≤ 5, 0 ≤ y ≤ 5, and the planes x = 0, y = 0, and

z = 0.

52. Find the volume of the pyramid with base in the plane

z = −6 and sides formed by the three planes y = 0 and

y − x = 4 and 2x + y + z = 4.

53. Find the volume between the planes z = 1 + x + y and

x + y + z = 1 and above the triangle x + y ≤ 1, x ≥ 0,

y ≥ 0 in the xy-plane.

54. Find the mass of a triangular-shaped solid bounded by

the planes z = 1 + x, z = 1 − x, z = 0, and with

0 ≤ y ≤ 3. The density is � = 10 − z gm/cm3, and

x, y, z are in cm.

55. Find the mass of the solid bounded by the xy-plane, yz-

plane, xz-plane, and the plane (x∕3)+(y∕2)+(z∕6) = 1,

if the density of the solid is given by �(x, y, z) = x+ y.

56. Find the mass of the pyramid with base in the plane

z = −6 and sides formed by the three planes y = 0 and

y−x = 4 and 2x+ y+ z = 4, if the density of the solid

is given by �(x, y, z) = y.

57. Let E be the solid pyramid bounded by the planes

x + z = 6, x − z = 0, y + z = 6, y − z = 0, and

above the plane z = 0 (see Figure 16.27). The density

at any point in the pyramid is given by �(x, y, z) = z

grams per cm3, where x, y, and z are measured in cm.

(a) Explain in practical terms what the triple integral

∫
E
z dV represents.

(b) In evaluating the integral from part (a), how many

separate triple integrals would be required if we

chose to integrate in the z-direction first?

(c) Evaluate the triple integral from part (a) by inte-

grating in a well-chosen order.

Figure 16.27

58. (a) What is the equation of the plane passing through

the points (1, 0, 0), (0, 1, 0), and (0, 0, 1)?

(b) Find the volume of the region bounded by this

plane and the planes x = 0, y = 0, and z = 0.

Problems 59–61 refer to Figure 16.28, which shows triangu-

lar portions of the planes 2x+4y+z = 4, 3x−2y = 0, z = 2,

and the three coordinate planes x = 0, y = 0, and z = 0. For

each solid region E, write down an iterated integral for the

triple integral ∫
E
f (x, y, z) dV .

Figure 16.28

59. E is the region bounded by y = 0, z = 0, 3x − 2y = 0,

and 2x + 4y + z = 4.

60. E is the region bounded by x = 0, y = 0, z = 0, z = 2,

and 2x + 4y + z = 4.

61. E is the region bounded by x = 0, z = 0, 3x − 2y = 0,

and 2x + 4y + z = 4.

62. Figure 16.29 shows part of a spherical ball of radius

5 cm. Write an iterated triple integral which represents

the volume of this region.

✻

❄

2 cm

Figure 16.29

curgus
Red T
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63. A solid region D is a half cylinder of radius 1 lying hor-

izontally with its rectangular base in the xy-plane and

its axis along the y-axis from y = 0 to y = 10. (The

region is above the xy-plane.)

(a) What is the equation of the curved surface of this

half cylinder?

(b) Write the limits of integration of the integral

∫
D
f (x, y, z) dV in Cartesian coordinates.

64. Set up, but do not evaluate, an iterated integral for the

volume of the solid formed by the intersections of the

cylinders x2 + z2 = 1 and y2 + z2 = 1.

Problems 65–67 refer to Figure 16.30, which shows E, the

region in the first octant bounded by the parabolic cylinder

z = 6y2 and the elliptical cylinder x2 + 3y2 = 12. For the

given order of integration, write an iterated integral equiva-

lent to the triple integral ∫
E
f (x, y, z) dV .

Figure 16.30

65. dz dxdy 66. dx dz dy 67. dy dz dx

Problems 68–71 refer to Figure 16.31, which shows E, the

region in the first octant bounded by the planes z = 5 and

5x + 3z = 15 and the elliptical cylinder 4x2 + 9y2 = 36.

For the given order of integration, write an iterated integral

equivalent to the triple integral ∫
E
f (x, y, z) dV .

Figure 16.31

68. dz dy dx 69. dz dx dy

70. dy dz dx 71. dy dx dz

Problems 72–74 refer to Figure 16.32, which shows E, the

region in the first octant bounded by the plane x + y = 2

and the parabolic cylinder z = 4 − x2. For the given order

of integration, write an iterated integral, or sum of integrals,

equivalent to the triple integral ∫
E
f (x, y, z) dV .

Figure 16.32

72. dz dy dx 73. dy dz dx 74. dy dx dz

Problems 75–76 concern the center of mass, the point at

which the mass of a solid body in motion can be considered

to be concentrated. If the object has density �(x, y, z) at the

point (x, y, z) and occupies a region W , then the coordinates

(x̄, ȳ, z̄) of the center of mass are given by

x̄ =
1

m ∫
W

x� dV ȳ =
1

m ∫
W

y� dV z̄ =
1

m ∫
W

z� dV

where m = ∫
W
� dV is the total mass of the body.

75. A solid is bounded below by the square z = 0, 0 ≤ x ≤

1, 0 ≤ y ≤ 1 and above by the surface z = x + y + 1.

Find the total mass and the coordinates of the center of

mass if the density is 1 gm/cm3 and x, y, z are measured

in centimeters.

76. Find the center of mass of the tetrahedron that is

bounded by the xy, yz, xz planes and the plane x +

2y+ 3z = 1. Assume the density is 1 gm/cm3 and x, y,

z are in centimeters.

Strengthen Your Understanding

In Problems 77–78, explain what is wrong with the state-

ment.

77. Let S be the solid sphere x2 + y2 + z2 ≤ 1 and let U be

the upper half of S where z ≥ 0. Then

∫
S
f (x, y, z) dV = 2 ∫

U
f (x, y, z) dV .

78. ∫
1

0
∫

x

0
∫

y

0
f (x, y, z) dz dy dx = ∫

1

0
∫

1

y
∫

x

0
f (x, y, z) dz dx dy

In Problems 79–80, give an example of:

79. A function f such that ∫
R
fdV = 7, where R is the

cylinder x2 + y2 ≤ 4, 0 ≤ z ≤ 3.

80. A nonconstant function f (x, y, z) such that if B is the

region enclosed by the sphere of radius 1 centered at the

origin, the integral ∫
B
f (x, y, z) dx dy dz is zero.
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Are the statements in Problems 81–90 true or false? Give

reasons for your answer.

81. If �(x, y, z) is mass density of a material in 3-space,

then ∫
W
�(x, y, z) dV gives the volume of the solid re-

gion W .

82. The region of integration of the triple iterated inte-

gral ∫
1

0
∫

1

0
∫

x

0
f dz dy dx lies above a square in the xy-

plane and below a plane.

83. If W is the unit ball x2 + y2 + z2 ≤ 1 then an iterated

integral over W is ∫
1

0
∫

√

1−x2

0
∫

√

1−x2−y2

0
f dz dy dx.

84. The iterated integrals ∫
1

0
∫

1−x

0
∫

1−x−y

0
f dz dy dx and

∫
1

0
∫

1−z

0
∫

1−y−z

0
f dx dy dz are equal.

85. The iterated integrals ∫
1

−1
∫

1

0
∫

1−x2

0
f dz dy dx and

∫
1

0
∫

1

0
∫

√

1−z

−
√

1−z
f dx dy dz are equal.

86. If W is a rectangular solid in 3-space, then ∫
W
f dV =

∫
b

a
∫

d

c
∫

k

e
fdz dy dx, where a, b, c, d, e, and k are con-

stants.

87. If W is the unit cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1

and ∫
W
f dV = 0, then f = 0 everywhere in the unit

cube.

88. If f > g at all points in the solid region W , then

∫
W
f dV > ∫

W
g dV .

89. If W1 and W2 are solid regions with volume(W1) >

volume(W2) then ∫
W1

f dV > ∫
W2

f dV .

90. Both double and triple integrals can be used to compute

volume.

16.4 DOUBLE INTEGRALS IN POLAR COORDINATES

Integration in Polar Coordinates

We started this chapter by putting a rectangular grid on the fox population density map, to estimate

the total population using a Riemann sum. However, sometimes a polar grid is more appropriate.

Example 1 A biologist studying insect populations around a circular lake divides the area into the polar sectors

of radii 2, 3, and 4 km in Figure 16.33. The approximate population density in each sector is shown

in millions per square km. Estimate the total insect population around the lake.

Shore of the lake

Lake

13

20
17

10

14

8

17
10

2 3 4

Figure 16.33: An insect-infested lake showing the insect population density by sector

Solution To get the estimate, we multiply the population density in each sector by the area of that sector.

Unlike the rectangles in a rectangular grid, the sectors in this grid do not all have the same area. The

inner sectors have area
1

4
(�32 − �22) =

5�

4
≈ 3.93 km2,

and the outer sectors have area

1

4
(�42 − �32) =

7�

4
≈ 5.50 km2,

so we estimate

Population ≈ (20)(3.93) + (17)(3.93) + (14)(3.93) + (17)(3.93)

+(13)(5.50) + (10)(5.50) + (8)(5.50) + (10)(5.50)

= 492.74 million insects.
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What Is dA in Polar Coordinates?

The previous example used a polar grid rather than a rectangular grid. A rectangular grid is con-

structed from vertical and horizontal lines of the form x = k (a constant) and y = l (another con-

stant). In polar coordinates, r = k gives a circle of radius k centered at the origin and � = l gives a

ray emanating from the origin (at angle l with the x-axis). A polar grid is built out of these circles

and rays. Suppose we want to integrate f (r, �) over the region R in Figure 16.34.

�0 = �

�n = �

r0 = a

rm = b

x

y

✠

R

Figure 16.34: Dividing up a region using a polar grid

❯
■

✛

✛

Δr

Δ�

☛
�

r

❨
Arc of circle
of radius r

rΔ�

✙
ΔA

x

y

Figure 16.35: Calculating area ΔA in polar coordinates

Choosing (rij, �ij ) in the ij-th bent rectangle in Figure 16.34 gives a Riemann sum:
∑

i,j

f (rij , �ij) ΔA.

To calculate the area ΔA, look at Figure 16.35. If Δr and Δ� are small, the shaded region is approx-

imately a rectangle with sides rΔ� and Δr, so

ΔA ≈ rΔ�Δr.

Thus, the Riemann sum is approximately
∑

i,j

f (rij , �ij) rij Δ�Δr.

If we take the limit as Δr and Δ� approach 0, we obtain

∫R
f dA =

∫

�

� ∫

b

a

f (r, �) r dr d�.

When computing integrals in polar coordinates, use x = r cos �, y = r sin �, x2 + y2 = r2. Put

dA = r dr d� or dA = r d� dr.

Example 2 Compute the integral of f (x, y) = 1∕(x2 + y2)3∕2 over the region R shown in Figure 16.36.

�

4

x

y

1 2

R

Figure 16.36: Integrate f over the polar region
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Solution The region R is described by the inequalities 1 ≤ r ≤ 2, 0 ≤ � ≤ �∕4. In polar coordinates,

r =
√

x2 + y2, so we can write f as

f (x, y) =
1

(x2 + y2)3∕2
=

1

(r2)3∕2
=

1

r3
.

Then

∫R
f dA =

∫

�∕4

0 ∫

2

1

1

r3
r dr d� =

∫

�∕4

0

(

∫

2

1

r−2 dr

)

d�

=
∫

�∕4

0

−
1

r

|

|

|

|

r=2

r=1

d� =
∫

�∕4

0

1

2
d� =

�

8
.

Example 3 For each region in Figure 16.37, decide whether to integrate using polar or Cartesian coordinates.

On the basis of its shape, write an iterated integral of an arbitrary function f (x, y) over the region.

1 3

−1

1

2

x

y(a)

−3 3

−3

3

x

y(b)

2
−1

1

2

3

x

y(c)

1

2

−2 −1
x

y(d)

Figure 16.37

Solution (a) Since this is a rectangular region, Cartesian coordinates are likely to be a better choice. The

rectangle is described by the inequalities 1 ≤ x ≤ 3 and −1 ≤ y ≤ 2, so the integral is

∫

2

−1 ∫

3

1

f (x, y) dx dy.

(b) A circle is best described in polar coordinates. The radius is 3, so r goes from 0 to 3, and to

describe the whole circle, � goes from 0 to 2�. The integral is

∫

2�

0 ∫

3

0

f (r cos �, r sin �) r dr d�.

(c) The bottom boundary of this trapezoid is the line y = (x∕2) − 1 and the top is the line y = 3,

so we use Cartesian coordinates. If we integrate with respect to y first, the lower limit of the

integral is (x∕2) − 1 and the upper limit is 3. The x limits are x = 0 to x = 2. So the integral is

∫

2

0 ∫

3

(x∕2)−1

f (x, y) dy dx.

(d) This is another polar region: it is a piece of a ring in which r goes from 1 to 2. Since it is in the

second quadrant, � goes from �∕2 to �. The integral is

∫

�

�∕2 ∫

2

1

f (r cos �, r sin �) r dr d�.
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Exercises and Problems for Section 16.4 Online Resource: Additional Problems for Section 16.4
EXERCISES

For the regions R in Exercises 1–4, write ∫
R
f dA as an it-

erated integral in polar coordinates.

1. y

x

0.5

0.5

2.
√

2

−
√

2

−
√

2
√

2

x

y

3.

−1 1

2

x

y 4.

1

2

−2 −1
x

y

In Exercises 5–8, choose rectangular or polar coordinates to

set up an iterated integral of an arbitrary function f (x, y)

over the region.

5.

1 5

2

4

x

y 6.

−5 5

−5

5

x

y

7. −4 −2 2 4

−4

−2

x
y 8.

2

1

3

5

x

y

Sketch the region of integration in Exercises 9–15.

9.
∫

4

0 ∫

�∕2

−�∕2

f (r, �) r d� dr

10.
∫

�

�∕2 ∫

1

0

f (r, �) r dr d�

11.
∫

2�

0 ∫

2

1

f (r, �) r dr d�

12.
∫

�∕3

�∕6 ∫

1

0

f (r, �) r dr d�

13.
∫

�∕4

0 ∫

1∕ cos �

0

f (r, �) r dr d�

14.
∫

4

3 ∫

3�∕2

3�∕4

f (r, �) r d� dr

15.
∫

�∕2

�∕4 ∫

2∕ sin �

0

f (r, �) r dr d�

PROBLEMS

In Problems 16–18, evaluate the integral.

16. ∫
R

√

x2 + y2 dxdy where R is 4 ≤ x2 + y2 ≤ 9.

17. ∫
R
sin(x2 + y2) dA, where R is the disk of radius 2 cen-

tered at the origin.

18. ∫
R
(x2 −y2) dA, where R is the first quadrant region be-

tween the circles of radius 1 and radius 2.

Convert the integrals in Problems 19–21 to polar coordinates

and evaluate.

19.
∫

0

−1 ∫

√

1−x2

−
√

1−x2
xdy dx 20.

∫

√

6

0 ∫

x

−x

dy dx

21.
∫

√

2

0 ∫

√

4−y2

y

xy dx dy

Problems 22–26 concern Figure 16.38, which shows regions

R1, R2, and R3 contained in the semicircle x2 + y2 = 4 with

y ≥ 0.

−2 −1 2

2

R1 R2

R3

✛ √

3x + y = 0

✠
x2 + y2 = 4

x

y

Figure 16.38

22. In Cartesian coordinates, write ∫
R1

2y dA as an iterated

integral in two different ways and then evaluate it.

23. In Cartesian coordinates, write ∫
R2

2y dA as an iterated

integral in two different ways.

24. Evaluate ∫
R3
(x2 + y2) dA.

25. Evaluate ∫
R
12y dA, where R is the region formed by

combining the regions R1 and R2.

curgus
Blue T

curgus
Blue T

curgus
Blue T

curgus
Blue T

curgus
Blue T

curgus
Blue T

curgus
Blue T

curgus
Blue T

curgus
Blue T

curgus
Blue T

curgus
Blue T

curgus
Blue T
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26. Evaluate ∫
S
x dA, where S is the region formed by

combining the regions R2 and R3.

27. Consider the integral ∫
3

0
∫

1

x∕3
f (x, y) dy dx.

(a) Sketch the region R over which the integration is

being performed.

(b) Rewrite the integral with the order of integration

reversed.

(c) Rewrite the integral in polar coordinates.

28. Describe the region of integration for ∫
�∕2

�∕4
∫

4∕ sin �

1∕ sin �
f (r, �)r dr d�.

29. Evaluate the integral by converting it into Cartesian co-

ordinates:

∫

�∕6

0 ∫

2∕ cos �

0

r dr d�.

30. (a) Sketch the region of integration of

∫

1

0 ∫

√

4−x2

√

1−x2
x dy dx +

∫

2

1 ∫

√

4−x2

0

xdy dx

(b) Evaluate the quantity in part (a).

31. Find the volume of the region between the graph of

f (x, y) = 25 − x2 − y2 and the xy plane.

32. Find the volume of an ice cream cone bounded by

the hemisphere z =
√

8 − x2 − y2 and the cone z =
√

x2 + y2.

33. (a) For a > 0, find the volume under the graph of

z = e−(x
2+y2) above the disk x2 + y2 ≤ a2.

(b) What happens to the volume as a → ∞?

34. A circular metal disk of radius 3 lies in the xy-plane

with its center at the origin. At a distance r from the ori-

gin, the density of the metal per unit area is � =
1

r2 + 1
.

(a) Write a double integral giving the total mass of the

disk. Include limits of integration.

(b) Evaluate the integral.

35. A city surrounds a bay as shown in Figure 16.39. The

population density of the city (in thousands of people

per square km) is �(r, �), where r and � are polar coor-

dinates and distances are in km.

(a) Set up an iterated integral in polar coordinates giv-

ing the total population of the city.

(b) The population density decreases the farther you

live from the shoreline of the bay; it also decreases

the farther you live from the ocean. Which of the

following functions best describes this situation?

(i) �(r, �) = (4 − r)(2 + cos �)

(ii) �(r, �) = (4 − r)(2 + sin �)

(iii) �(r, �) = (r + 4)(2 + cos �)

(c) Estimate the population using your answers to

parts (a) and (b).

City

■
Bay

x (km)

y (km)

Ocean

1

4

Figure 16.39

36. A disk of radius 5 cm has density 10 gm/cm2 at its cen-

ter and density 0 at its edge, and its density is a linear

function of the distance from the center. Find the mass

of the disk.

37. Electric charge is distributed over the xy-plane, with

density inversely proportional to the distance from the

origin. Show that the total charge inside a circle of ra-

dius R centered at the origin is proportional to R. What

is the constant of proportionality?

38. (a) Graph r = 1∕(2 cos �) for −�∕2 ≤ � ≤ �∕2 and

r = 1.

(b) Write an iterated integral representing the area in-

side the curve r = 1 and to the right of r =

1∕(2 cos �). Evaluate the integral.

39. (a) Sketch the circles r = 2 cos � for −�∕2 ≤ � ≤ �∕2

and r = 1.

(b) Write an iterated integral representing the area in-

side the circle r = 2 cos � and outside the circle

r = 1. Evaluate the integral.

Strengthen Your Understanding

In Problems 40–44, explain what is wrong with the state-

ment.

40. If R is the region bounded by x = 1, y = 0, y = x, then

in polar coordinates ∫
R
x dA = ∫

�∕4

0
∫

1

0
r2 cos � dr d�.

41. If R is the region x2 + y2 ≤ 4, then ∫
R
(x2 + y2) dA =

∫
2�

0
∫

2

0
r2 dr d�.

42. ∫
1

0
∫

1

0

√

x2 + y2 dy dx = ∫
�∕2

0
∫

1

0
r2 dr d�

43. ∫
2

1
∫

√

4−x2

0
1 dy dx = ∫

�∕2

0
∫

2

1
r dr d�

44. ∫
1

0
∫

�

0
r dr d� = ∫

�

0
∫

1

0
r dr d�

In Problems 45–48, give an example of:

45. A region R of integration in the first quadrant which

suggests the use of polar coordinates.

46. An integrand f (x, y) that suggests the use of polar co-

ordinates.
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47. A function f (x, y) such that ∫
R
f (x, y) dy dx in polar

coordinates has an integrand without a factor of r.

48. A region R such that ∫
R
f (x, y) dA must be broken into

two integrals in Cartesian coordinates, but only needs

one integral in polar coordinates.

49. Which of the following integrals give the area of the

unit circle?

(a)
∫

1

−1 ∫

√

1−x2

−
√

1−x2
dy dx (b)

∫

1

−1 ∫

√

1−x2

−
√

1−x2
x dy dx

(c)
∫

2�

0 ∫

1

0

r dr d� (d)
∫

2�

0 ∫

1

0

dr d�

(e)
∫

1

0 ∫

2�

0

r d� dr (f)
∫

1

0 ∫

2�

0

d� dr

Are the statements in Problems 50–55 true or false? Give

reasons for your answer.

50. The integral ∫
2�

0
∫

1

0
dr d� gives the area of the unit cir-

cle.

51. The quantity 8 ∫
7

5
∫

�∕4

0
r d� dr gives the area of a ring

with radius between 5 and 7.

52. Let R be the region inside the semicircle x2 + y2 = 9

with y ≥ 0. Then ∫
R
(x + y) dA = ∫

�

0
∫

3

0
r dr d�

53. The integrals ∫
�

0
∫

1

0
r2 cos � dr d� and 2 ∫

�∕2

0
∫

1

0
r2 cos � dr d�

are equal.

54. The integral ∫
�∕4

0
∫

1∕ cos �

0
r dr d� gives the area of the

region 0 ≤ x ≤ 1, 0 ≤ y ≤ x.

55. The integral ∫
2�

0
∫

1

0
r3 dr d� gives the area of the unit

circle.

16.5 INTEGRALS IN CYLINDRICAL AND SPHERICAL COORDINATES

Some double integrals are easier to evaluate in polar, rather than Cartesian, coordinates. Similarly,

some triple integrals are easier in non-Cartesian coordinates.

Cylindrical Coordinates

The cylindrical coordinates of a point (x, y, z) in 3-space are obtained by representing the x and y

coordinates in polar coordinates and letting the z-coordinate be the z-coordinate of the Cartesian

coordinate system. (See Figure 16.40.)

Relation Between Cartesian and Cylindrical Coordinates

Each point in 3-space is represented using 0 ≤ r < ∞, 0 ≤ � ≤ 2�, −∞ < z < ∞.

x = r cos �,

y = r sin �,

z = z.

As with polar coordinates in the plane, note that x2 + y2 = r2.

x

y

z

� r

(r, �, 0)

P = (r, �, z)

z

Figure 16.40: Cylindrical

coordinates: (r, �, z)
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A useful way to visualize cylindrical coordinates is to sketch the surfaces obtained by setting

one of the coordinates equal to a constant. See Figures 16.41–16.43.

x y

z

✠

r = 1

✲r = 2

Figure 16.41: The surfaces r = 1 and

r = 2

Figure 16.42: The surfaces � = �∕4

and � = 3�∕4

Figure 16.43: The surfaces z = −1 and

z = 3

Setting r = c (where c is constant) gives a cylinder around the z-axis whose radius is c. Setting

� = c gives a half-plane perpendicular to the xy plane, with one edge along the z-axis, making an

angle c with the x-axis. Setting z = c gives a horizontal plane |c| units from the xy-plane. We call

these fundamental surfaces.

The regions that can most easily be described in cylindrical coordinates are those regions whose

boundaries are such fundamental surfaces. (For example, vertical cylinders, or wedge-shaped parts

of vertical cylinders.)

Example 1 Describe in cylindrical coordinates a wedge of cheese cut from a cylinder 4 cm high and 6 cm in

radius; this wedge subtends an angle of �∕6 at the center. (See Figure 16.44.)

Solution The wedge is described by the inequalities 0 ≤ r ≤ 6, and 0 ≤ z ≤ 4, and 0 ≤ � ≤ �∕6.

x

y

z

✛

✛

4 cm

✛

✛

6 cm
✛ �

6

Figure 16.44: A wedge of cheese

Integration in Cylindrical Coordinates

To integrate a double integral ∫
R
f dA in polar coordinates, we had to express the area element dA

in terms of polar coordinates: dA = r dr d�. To evaluate a triple integral ∫
W

f dV in cylindrical

coordinates, we need to express the volume element dV in cylindrical coordinates.

In Figure 16.45, consider the volume element ΔV bounded by fundamental surfaces. The area

of the base is ΔA ≈ rΔrΔ�. Since the height is Δz, the volume element is given approximately by

ΔV ≈ rΔrΔ�Δz.
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When computing integrals in cylindrical coordinates, put dV = r dr d� dz. Other orders of

integration are also possible.

✛ ΔV

Δ�

✛

✛

✻

❄
Δz

✻

❄

z

✛ ✛✛ ✛rΔ� Δr

r

z

x

y

Figure 16.45: Volume element in cylindrical coordinates

Example 2 Find the mass of the wedge of cheese in Example 1, if its density is 1.2 grams/cm3.

Solution If the wedge is W , its mass is

∫W
1.2 dV .

In cylindrical coordinates this integral is

∫

4

0 ∫

�∕6

0 ∫

6

0

1.2 r dr d� dz =
∫

4

0 ∫

�∕6

0

0.6r2
|

|

|

|

6

0

d� dz = 21.6
∫

4

0 ∫

�∕6

0

d� dz

= 21.6
(

�

6

)

4 = 45.239 grams.

Example 3 A water tank in the shape of a hemisphere has radius a; its base is its plane face. Find the volume,

V , of water in the tank as a function of ℎ, the depth of the water.

Solution In Cartesian coordinates, a sphere of radius a has the equation x2 +y2 +z2 = a2. (See Figure 16.46.)

In cylindrical coordinates, r2 = x2 + y2, so this becomes

r2 + z2 = a2.

Thus, if we want to describe the amount of water in the tank in cylindrical coordinates, we let r go

from 0 to
√

a2 − z2, we let � go from 0 to 2�, and we let z go from 0 to ℎ, giving

Volume

of water
=
∫W

1 dV =
∫

2�

0 ∫

ℎ

0 ∫

√

a2−z2

0

r dr dz d� =
∫

2�

0 ∫

ℎ

0

r2

2

|

|

|

|

r=
√

a2−z2

r=0

dz d�

=
∫

2�

0 ∫

ℎ

0

1

2
(a2 − z2) dz d� =

∫

2�

0

1

2

(

a2z −
z3

3

)

|

|

|

|

z=ℎ

z=0

d�

=
∫

2�

0

1

2

(

a2ℎ −
ℎ3

3

)

d� = �

(

a2ℎ −
ℎ3

3

)

.
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x

z

✻

❄

ℎ

✛

✛

r

r2 + z2 = a2

Figure 16.46: Hemispherical water tank with radius a and water of depth ℎ

Spherical Coordinates

In Figure 16.47, the point P has coordinates (x, y, z) in the Cartesian coordinate system. We define

spherical coordinates �, �, and � for P as follows: � =
√

x2 + y2 + z2 is the distance of P from the

origin; � is the angle between the positive z-axis and the line through the origin and the point P ;

and � is the same as in cylindrical coordinates.

Figure 16.47: Spherical coordinates: (�,�, �)

In cylindrical coordinates,

x = r cos �, and y = r sin �, and z = z.

From Figure 16.47 we have z = � cos� and r = � sin�, giving the following relationship:

Relation Between Cartesian and Spherical Coordinates

Each point in 3-space is represented using 0 ≤ � < ∞, 0 ≤ � ≤ �, and 0 ≤ � ≤ 2�.

x = � sin� cos �

y = � sin� sin �

z = � cos�.

Also, �2 = x2 + y2 + z2.

This system of coordinates is useful when there is spherical symmetry with respect to the ori-

gin, either in the region of integration or in the integrand. The fundamental surfaces in spherical

coordinates are � = k (a constant), which is a sphere of radius k centered at the origin, � = k (a

constant), which is the half-plane with its edge along the z-axis, and � = k (a constant), which is a

cone if k ≠ �∕2 and the xy-plane if k = �∕2. (See Figures 16.48–16.50.)
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Figure 16.48: The surfaces

� = 1 and � = 2

Figure 16.49: The surfaces � = �∕4

and � = 3�∕4

Figure 16.50: The surfaces � = �∕6 and

� = 2�∕3

Integration in Spherical Coordinates
To use spherical coordinates in triple integrals we need to express the volume element, dV , in spher-

ical coordinates. From Figure 16.51, we see that the volume element can be approximated by a box

with curved edges. One edge has length Δ�. The edge parallel to the xy-plane is an arc of a cir-

cle made from rotating the cylindrical radius r (= � sin�) through an angle Δ�, and so has length

� sin�Δ�. The remaining edge comes from rotating the radius � through an angle Δ�, and so has

length �Δ�. Therefore, ΔV ≈ Δ�(�Δ�)(� sin�Δ�) = �2 sin�Δ�Δ�Δ�.

x

y

z

❘
Δ�

Δ�

✠

�Δ�
� sin�Δ�

■
Δ�

�

�

❄

✛

✛

�

✛

✛� sin�

Figure 16.51: Volume element in spherical coordinates
Thus:

When computing integrals in spherical coordinates, put dV = �2 sin�d� d� d�. Other orders

of integration are also possible.

Example 4 Use spherical coordinates to derive the formula for the volume of a ball of radius a.

Solution In spherical coordinates, a ball of radius a is described by the inequalities 0 ≤ � ≤ a, 0 ≤ � ≤ 2�,

and 0 ≤ � ≤ �. Note that � goes from 0 to 2�, whereas � goes from 0 to �. We find the volume by

integrating the constant density function 1 over the ball:

Volume =
∫R

1 dV =
∫

2�

0 ∫

�

0 ∫

a

0

�2 sin�d� d� d� =
∫

2�

0 ∫

�

0

1

3
a3 sin�d� d�

=
1

3
a3

∫

2�

0

− cos�
|

|

|

|

�

0

d� =
2

3
a3

∫

2�

0

d� =
4�a3

3
.
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Example 5 Find the magnitude of the gravitational force exerted by a solid hemisphere of radius a and constant

density � on a unit mass located at the center of the base of the hemisphere.

Solution Assume the base of the hemisphere rests on the xy-plane with center at the origin. (See Figure 16.52.)

Newton’s law of gravitation says that the force between two masses m1 and m2 at a distance r apart

is F = Gm1m2∕r
2, where G is the gravitational constant.

In this example, symmetry shows that the net component of the force on the particle at the origin

due to the hemisphere is in the z direction only. Any force in the x or y direction from some part of

the hemisphere is canceled by the force from another part of the hemisphere directly opposite the

first.

To compute the net z-component of the gravitational force, we imagine a small piece of the

hemisphere with volume ΔV , located at spherical coordinates (�, �, �). This piece has mass �ΔV

and exerts a force of magnitude F on the unit mass at the origin. The z-component of this force

is given by its projection onto the z-axis, which can be seen from the figure to be F cos�. The

distance from the mass �ΔV to the unit mass at the origin is the spherical coordinate �. Therefore,

the z-component of the force due to the small piece ΔV is

z-component

of force
=

G(�ΔV )(1)

�2
cos�.

Adding the contributions of the small pieces, we get a vertical force with magnitude

F =
∫

2�

0 ∫

�∕2

0 ∫

a

0

(

G�

�2

)

(cos�)�2 sin�d� d� d� =
∫

2�

0 ∫

�∕2

0

G�(cos� sin�)�
|

|

|

|

�=a

�=0

d�d�

=
∫

2�

0 ∫

�∕2

0

G�a cos� sin�d� d� =
∫

2�

0

G�a

(

−
(cos�)2

2

)

|

|

|

|

�=�∕2

�=0

d�

=
∫

2�

0

G�a

(

1

2

)

d� = G�a�.

The integral in this example is improper because the region of integration contains the origin, where

the force is undefined. However, it can be shown that the result is nevertheless correct.

x

y

z

✠
ΔV

�

✛ ✛a✒

Unit mass

✲z-component
of force

✛ Force, F , due
to mass �dV

Figure 16.52: Gravitational force of hemisphere on mass at origin

Exercises and Problems for Section 16.5 Online Resource: Additional Problems for Section 16.5
EXERCISES

1. Match the equations in (a)–(f) with one of the surfaces

in (I)–(VII).

(a) x = 5 (b) x2 + z2 = 7 (c) � = 5

(d) z = 1 (e) r = 3 (f) � = 2�

(I) Cylinder, centered on x-axis.

(II) Cylinder, centered on y-axis.

(III) Cylinder, centered on z-axis.

(IV) Plane, perpendicular to the x-axis.

(V) Plane, perpendicular to the y-axis.

(VI) Plane, perpendicular to the z-axis.

(VII) Sphere.
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In Exercises 2–7, find an equation for the surface.

2. The vertical plane y = x in cylindrical coordinates.

3. The top half of the sphere x2+y2+z2 = 1 in cylindrical

coordinates.

4. The cone z =
√

x2 + y2 in cylindrical coordinates.

5. The cone z =
√

x2 + y2 in spherical coordinates.

6. The plane z = 10 in spherical coordinates.

7. The plane z = 4 in spherical coordinates.

In Exercises 8–9, evaluate the triple integrals in cylindrical

coordinates over the region W .

8. f (x, y, z) = sin(x2 + y2), W is the solid cylinder with

height 4 and with base of radius 1 centered on the z axis

at z = −1.

9. f (x, y, z) = x2 + y2 + z2, W is the region 0 ≤ r ≤ 4,

�∕4 ≤ � ≤ 3�∕4, −1 ≤ z ≤ 1.

In Exercises 10–11, evaluate the triple integrals in spherical

coordinates.

10. f (�, �, �) = sin�, over the region 0 ≤ � ≤ 2�,

0 ≤ � ≤ �∕4, 1 ≤ � ≤ 2.

11. f (x, y, z) = 1∕(x2 + y2 + z2)1∕2 over the bottom half of

the sphere of radius 5 centered at the origin.

For Exercises 12–18, choose coordinates and set up a triple

integral, including limits of integration, for a density func-

tion f over the region.

12. 13.

14. 15.

16. A piece of a sphere; angle at the center is �∕3.

17.

18.

PROBLEMS

In Problems 19–21, if W is the region in Figure 16.53, what

are the limits of integration?

x

y

z

4

(2, 0, 4)

Figure 16.53: Cone with flat top,

symmetric about z-axis

19.
∫

?

? ∫

?

? ∫

?

?

f (r, �, z)r dz dr d�

20.
∫

?

? ∫

?

? ∫

?

?

g(�,�, �)�2 sin�d� d� d�

21.
∫

?

? ∫

?

? ∫

?

?

ℎ(x, y, z) dz dy dx

22. Write a triple integral in cylindrical coordinates giving

the volume of a sphere of radius K centered at the ori-

gin. Use the order dz dr d�.

23. Write a triple integral in spherical coordinates giving

the volume of a sphere of radius K centered at the ori-

gin. Use the order d� d� d�.
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In Problems 24–26, for the regions W shown, write the lim-

its of integration for ∫
W

dV in the following coordinates:

(a) Cartesian (b) Cylindrical (c) Spherical

24.

x

One-eighth sphere

y

z

1

1

−1

25.

x

y

z

1

Cone, topped by sphere
of radius 1 centered at origin, 90◦ at vertex

26.

x
y

z

1∕
√

2

Cone, flat on top,
�∕2 at vertex

27. Write a triple integral representing the volume above

the cone z =
√

x2 + y2 and below the sphere of radius

2 centered at the origin. Include limits of integration but

do not evaluate. Use:

(a) Cylindrical coordinates

(b) Spherical coordinates

28. Write a triple integral representing the volume of the

region between spheres of radius 1 and 2, both centered

at the origin. Include limits of integration but do not

evaluate. Use:

(a) Spherical coordinates.

(b) Cylindrical coordinates. Write your answer as the

difference of two integrals.

In Problems 29–34, write a triple integral including limits of

integration that gives the specified volume.

29. Under � = 3 and above � = �∕3.

30. Under � = 3 and above z = r.

31. The region between z = 5 and z = 10, with 2 ≤

x2 + y2 ≤ 3 and 0 ≤ � ≤ �.

32. Between the cone z =
√

x2 + y2 and the first quadrant

of the xy-plane, with x2 + y2 ≤ 7.

33. The cap of the solid sphere x2 + y2 + z2 ≤ 10 cut off by

the plane z = 1.

34. Below the cone z = r, above the xy-plane, and inside

the sphere x2 + y2 + z2 = 8.

35. (a) Write an integral (including limits of integration)

representing the volume of the region inside the

cone z =
√

3(x2 + y2) and below the plane z = 1.

(b) Evaluate the integral.

36. Find the volume between the cone z =
√

x2 + y2 and

the plane z = 10 + x above the disk x2 + y2 ≤ 1.

37. Find the volume between the cone x =
√

y2 + z2 and

the sphere x2 + y2 + z2 = 4.

38. The sphere of radius 2 centered at the origin is sliced

horizontally at z = 1. What is the volume of the cap

above the plane z = 1?

39. Suppose W is the region outside the cylinder x2 +y2 =

1 and inside the sphere x2 + y2 + z2 = 2. Calculate

∫
W

(x2 + y2) dV .

40. Write and evaluate a triple integral representing the vol-

ume of a slice of the cylindrical cake of height 2 and

radius 5 between the planes � = �∕6 and � = �∕3.

41. Write a triple integral representing the volume of the

cone in Figure 16.54 and evaluate it.

✛

✛

5
cm

✲✛ 5∕
√

2 cm

Figure 16.54

42. Find the average distance from the origin of

(a) The points in the interval |x| ≤ 12.

(b) The points in the plane in the disc r ≤ 12.

(c) The points in space in the ball � ≤ 12.
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In Problems 43–44, without performing the integration, de-

cide whether the integral is positive, negative, or zero.

43. W1 is the unit ball, x2 + y2 + z2 ≤ 1.

(a) ∫
W1

sin�dV (b) ∫
W1

cos�dV

44. W2 is 0 ≤ z ≤
√

1 − x2 − y2, the top half of the unit

ball.

(a) ∫
W2
(z2 − z) dV (b) ∫

W2
(−xz) dV

45. The insulation surrounding a pipe of length l is the re-

gion between two cylinders with the same axis. The in-

ner cylinder has radius a, the outer radius of the pipe,

and the insulation has thickness ℎ. Write a triple inte-

gral, including limits of integration, giving the volume

of the insulation. Evaluate the integral.

46. Assume p, q, r are positive constants. Find the volume

contained between the coordinate planes and the plane

x

p
+

y

q
+

z

r
= 1.

47. A cone stands with its flat base on a table. The cone’s

circular base has radius a; the vertex (tip) is at a height

of ℎ above the center of the base. Write a triple integral,

including limits of integration, representing the volume

of the cone. Evaluate the integral.

48. A half-melon is approximated by the region between

two concentric spheres, one of radius a and the other

of radius b, with 0 < a < b. Write a triple integral, in-

cluding limits of integration, giving the volume of the

half-melon. Evaluate the integral.

49. A bead is made by drilling a cylindrical hole of ra-

dius 1 mm through a sphere of radius 5 mm. See Fig-

ure 16.55.

(a) Set up a triple integral in cylindrical coordinates

representing the volume of the bead.

(b) Evaluate the integral.

✲✛
5 mm

✲✛❄

1mm

Figure 16.55

50. A pile of hay is in the region 0 ≤ z ≤ 2−x2 −y2, where

x, y, z are in meters. At height z, the density of the hay

is � = (2 − z) kg/m3.

(a) Write an integral representing the mass of hay in

the pile.

(b) Evaluate the integral.

51. Find the mass M of the solid region W given in spher-

ical coordinates by 0 ≤ � ≤ 3, 0 ≤ � < 2�, 0 ≤ � ≤

�∕4. The density, �(P ), at any point P is given by the

distance of P from the origin.

52. Write an integral representing the mass of a sphere of

radius 3 if the density of the sphere at any point is twice

the distance of that point from the center of the sphere.

53. A sphere has density at each point proportional to the

square of the distance of the point from the z-axis. The

density is 2 gm∕cm3 at a distance of 2 cm from the axis.

What is the mass of the sphere if it is centered at the ori-

gin and has radius 3 cm?

54. The density of a solid sphere at any point is proportional

to the square of the distance of the point to the center

of the sphere. What is the ratio of the mass of a sphere

of radius 1 to a sphere of radius 2?

55. A spherical shell centered at the origin has an inner ra-

dius of 6 cm and an outer radius of 7 cm. The density, �,

of the material increases linearly with the distance from

the center. At the inner surface, � = 9 gm/cm3; at the

outer surface, � = 11 gm/cm3.

(a) Using spherical coordinates, write the density, �,

as a function of radius, �.

(b) Write an integral giving the mass of the shell.

(c) Find the mass of the shell.

56. (a) Write an iterated integral which represents the

mass of a solid ball of radius a. The density at each

point in the ball is k times the distance from that

point to a fixed plane passing through the center of

the ball.

(b) Evaluate the integral.

57. In the region under z = 4 − x2 − y2 and above the xy-

plane the density of a gas is � = e−x−ygm/cm3, where

x, y, z are in cm. Write an integral, with limits of inte-

gration, representing the mass of the gas.

58. The density, �, of the cylinder x2 + y2 ≤ 4, 0 ≤ z ≤ 3

varies with the distance, r, from the z-axis:

� = 1 + r gm∕cm3
.

Find the mass of the cylinder if x, y, z are in cm.

59. The density of material at a point in a solid cylinder is

proportional to the distance of the point from the z-axis.

What is the ratio of the mass of the cylinder x2+y2 ≤ 1,

0 ≤ z ≤ 2 to the mass of the cylinder x2 + y2 ≤ 9,

0 ≤ z ≤ 2?
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60. Electric charge is distributed throughout 3-space, with

density proportional to the distance from the xy-plane.

Show that the total charge inside a cylinder of radius R

and height ℎ, sitting on the xy-plane and centered along

the z-axis, is proportional to R2ℎ2.

61. Electric charge is distributed throughout 3-space with

density inversely proportional to the distance from the

origin. Show that the total charge inside a sphere of ra-

dius R is proportional to R2.

For Problems 62–65, use the definition of center of mass

given on page 863. Assume x, y, z are in cm.

62. Let C be a solid cone with both height and radius 1

and contained between the surfaces z =
√

x2 + y2 and

z = 1. If C has constant mass density of 1 gm/cm3, find

the z-coordinate of C’s center of mass.

63. The density of the cone C in Problem 62 is given by

�(z) = z2 gm/cm3. Find

(a) The mass of C .

(b) The z-coordinate of C’s center of mass.

64. For a > 0, consider the family of solids bounded be-

low by the paraboloid z = a(x2 + y2) and above by the

plane z = 1. If the solids all have constant mass density

1 gm/cm3, show that the z-coordinate of the center of

mass is 2∕3 and so independent of the parameter a.

65. Find the location of the center of mass of a hemisphere

of radius a and density b gm/cm3.

Strengthen Your Understanding

In Problems 66–68, explain what is wrong with the state-

ment.

66. The integral
∫

2�

0 ∫

�

0 ∫

1

0

1 d� d� d� gives the volume

inside the sphere of radius 1.

67. Changing the order of integration gives

∫

2�

0 ∫

�∕4

0 ∫

2∕ cos�

0

�2 sin�d� d� d�

=
∫

2∕ cos�

0 ∫

�∕4

0 ∫

2�

0

�2 sin�d� d� d�.

68. The volume of a cylinder of height and radius 1 is

∫

2�

0 ∫

1

0 ∫

1

0

1 dz dr d�.

In Problems 69–70, give an example of:

69. An integral in spherical coordinates that gives the vol-

ume of a hemisphere.

70. An integral for which it is more convenient to use spher-

ical coordinates than to use Cartesian coordinates.

71. Which of the following integrals give the volume of the

unit sphere?

(a)
∫

2�

0 ∫

2�

0 ∫

1

0

1 d� d� d�

(b)
∫

�

0 ∫

2�

0 ∫

1

0

1 d� d� d�

(c)
∫

�

0 ∫

2�

0 ∫

1

0

�2 sin� d� d� d�

(d)
∫

�

0 ∫

2�

0 ∫

1

0

�2 sin� d� d� d�

(e)
∫

�

0 ∫

2�

0 ∫

1

0

� d� d� d�

16.6 APPLICATIONS OF INTEGRATION TO PROBABILITY

To represent how a quantity such as height or weight is distributed throughout a population, we use

a density function. To study two or more quantities at the same time and see how they are related,

we use a multivariable density function.

Density Functions

Distribution of Weight and Height in Expectant Mothers

Table 16.10 shows the distribution of weight and height in a survey of expectant mothers. The his-

togram in Figure 16.56 is constructed so that the volume of each bar represents the percentage in the

corresponding weight and height range. For example, the bar representing the mothers who weighed

60–70 kg and were 160–165 cm tall has base of area 10 kg ⋅ 5 cm = 50 kg cm. The volume of this

bar is 12%, so its height is 12%∕50 kg cm = 0.24%∕ kg cm. Notice that the units on the vertical axis

are % per kg cm, so the volume of a bar is a %. The total volume is 100% = 1.
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Table 16.10 Distribution of weight and height in a survey of expectant mothers, in %

45-50 kg 50-60 kg 60-70 kg 70-80 kg 80-105 kg Totals by height

150-155 cm 2 4 4 2 1 13

155-160 cm 0 12 8 2 1 23

160-165 cm 1 7 12 4 3 27

165-170 cm 0 8 12 6 2 28

170-180 cm 0 1 3 4 1 9

Totals by weight 3 32 39 18 8 100

0.05%

0.10%

0.15%

0.20%

0.25%

45

65

85

105
150

155
160

165
170

175
180kg

cm

percent

per kg cm

Figure 16.56: Histogram representing the data in Table 16.10

Example 1 Find the percentage of mothers in the survey with height between 170 and 180 cm.

Solution We add the percentages across the row corresponding to the 170–180 cm height range; this is equiv-

alent to adding the volumes of the corresponding rectangular solids in the histogram.

Percentage of mothers = 0 + 1 + 3 + 4 + 1 = 9%.

Smoothing the Histogram

If we group the data using narrower weight and height groups (and a larger sample), we can draw

a smoother histogram and get finer estimates. In the limit, we replace the histogram with a smooth

surface, in such a way that the volume under the surface above a rectangle is the percentage of

mothers in that rectangle. We define a density function, p(w, ℎ), to be the function whose graph is

the smooth surface. It has the property that

Fraction of sample with

weight between a and b and

height between c and d

=

Volume under graph of p

over the rectangle

a ≤ w ≤ b, c ≤ ℎ ≤ d

=
∫

b

a ∫

d

c

p(w, ℎ) dℎ dw.

This density also gives the probability that a mother is in these height and weight groups.
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Joint Probability Density Functions

We generalize this idea to represent any two characteristics, x and y, distributed throughout a popu-

lation.

A function p(x, y) is called a joint probability density function, or pdf, for x and y if

Probability that member of

population has x between a and b

and y between c and d

=

Volume under graph of p

above the rectangle

a ≤ x ≤ b, c ≤ y ≤ d

=
∫

b

a ∫

d

c

p(x, y) dy dx,

where

∫

∞

−∞ ∫

∞

−∞

p(x, y) dy dx = 1 and p(x, y) ≥ 0 for all x and y.

The probability that x falls in an interval of width Δx around x0 and y falls in an interval of

width Δy around y0 is approximately p(x0, y0)ΔxΔy.

A joint density function need not be continuous, as in Example 2. In addition, as in Example 4,

the integrals involved may be improper and must be computed by methods similar to those used for

improper one-variable integrals.

Example 2 Let p(x, y) be defined on the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 by p(x, y) = x+ y; let p(x, y) = 0 if (x, y)

is outside this square. Check that p is a joint density function. In terms of the distribution of x and y

in the population, what does it mean that p(x, y) = 0 outside the square?

Solution First, we have p(x, y) ≥ 0 for all x and y. To check that p is a joint density function, we show that

the total volume under the graph is 1:

∫

∞

−∞ ∫

∞

−∞

p(x, y) dy dx =
∫

1

0 ∫

1

0

(x + y) dy dx

=
∫

1

0

(

xy +
y2

2

)

|

|

|

|

1

0

dx =
∫

1

0

(

x +
1

2

)

dx =

(

x2

2
+

x

2

)

|

|

|

|

1

0

= 1.

The fact that p(x, y) = 0 outside the square means that the variables x and y never take values outside

the interval [0, 1]; that is, the value of x and y for any individual in the population is always between

0 and 1.

Example 3 Two variables x and y are distributed in a population according to the density function of Example 2.

Find the fraction of the population with x ≤ 1∕2, the fraction with y ≤ 1∕2, and the fraction with

both x ≤ 1∕2 and y ≤ 1∕2.

Solution The fraction with x ≤ 1∕2 is the volume under the graph to the left of the line x = 1∕2:

∫

1∕2

0 ∫

1

0

(x + y) dy dx =
∫

1∕2

0

(

xy +
y2

2

)

|

|

|

|

1

0

dx =
∫

1∕2

0

(

x +
1

2

)

dx

=

(

x2

2
+

x

2

)

|

|

|

|

1∕2

0

=
1

8
+

1

4
=

3

8
.

Since the function and the regions of integration are symmetric in x and y, the fraction with y ≤ 1∕2
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is also 3∕8. Finally, the fraction with both x ≤ 1∕2 and y ≤ 1∕2 is

∫

1∕2

0 ∫

1∕2

0

(x + y) dy dx =
∫

1∕2

0

(

xy +
y2

2

)

|

|

|

|

1∕2

0

dx =
∫

1∕2

0

(

1

2
x +

1

8

)

dx

=
(

1

4
x2 +

1

8
x

)

|

|

|

|

1∕2

0

=
1

16
+

1

16
=

1

8
.

Recall that a one-variable density function p(x) is a function such that p(x) ≥ 0 for all x, and

∫
∞

−∞ p(x) dx = 1.

Example 4 Let p1 and p2 be one-variable density functions for x and y, respectively. Check that p(x, y) =

p1(x)p2(y) is a joint density function.

Solution Since both p1 and p2 are density functions, they are nonnegative everywhere. Thus, their product

p1(x)p2(x) = p(x, y) is nonnegative everywhere. Now we must check that the volume under the

graph of p is 1. Since ∫
∞

−∞
p2(y) dy = 1 and ∫

∞

−∞
p1(x) dx = 1, we have

∫

∞

−∞ ∫

∞

−∞

p(x, y) dy dx =
∫

∞

−∞ ∫

∞

−∞

p1(x)p2(y) dy dx =
∫

∞

−∞

p1(x)

(

∫

∞

−∞

p2(y) dy

)

dx

=
∫

∞

−∞

p1(x)(1) dx =
∫

∞

−∞

p1(x) dx = 1.

Example 5 A machine in a factory is set to produce components 10 cm long and 5 cm in diameter. In fact, there

is a slight variation from one component to the next. A component is usable if its length and diameter

deviate from the correct values by less than 0.1 cm. With the length, x, in cm and the diameter, y, in

cm, the probability density function is

p(x, y) =
50

√

2

�
e−100(x−10)

2
e−50(y−5)

2
.

What is the probability that a component is usable? (See Figure 16.57.)

Figure 16.57: The density function p(x, y) =
50

√

2

�
e−100(x−10)

2
e−50(y−5)

2

Solution We know that

Probability that x and y satisfy

x0 − Δx ≤ x ≤ x0 + Δx

y0 − Δy ≤ y ≤ y0 + Δy

=
50

√

2

� ∫

y0+Δy

y0−Δy
∫

x0+Δx

x0−Δx

e−100(x−10)
2
e−50(y−5)

2
dx dy.
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Thus,

Probability that

component is usable
=

50
√

2

� ∫

5.1

4.9 ∫

10.1

9.9

e−100(x−10)
2
e−50(y−5)

2
dx dy.

The double integral must be evaluated numerically. This yields

Probability that

component is usable
=

50
√

2

�
(0.02556) = 0.57530.

Thus, there is a 57.530% chance that the component is usable.

Exercises and Problems for Section 16.6

EXERCISES

In Exercises 1–6, check whether p is a joint density function.

Assume p(x, y) = 0 outside the region R.

1. p(x, y) = 1∕2, where R is 4 ≤ x ≤ 5,−2 ≤ y ≤ 0

2. p(x, y) = 1, where R is 0 ≤ x ≤ 1, 0 ≤ y ≤ 2

3. p(x, y) = x + y, where R is −1 ≤ x ≤ 1, 0 ≤ y ≤ 1

4. p(x, y) = 6(y − x), where R is 0 ≤ x ≤ y ≤ 2

5. p(x, y) = (2∕�)(1 − x2 − y2), where R is x2 + y2 ≤ 1

6. p(x, y) = xye−x−y, where R is x ≥ 0, y ≥ 0

In Exercises 7–10, a joint probability density function is

given by p(x, y) = xy∕4 in R, the rectangle 0 ≤ x ≤ 2,

0 ≤ y ≤ 2, and p(x, y) = 0 else. Find the probability that a

point (x, y) satisfies the given conditions.

7. x ≤ 1 and y ≤ 1 8. x ≥ 1 and y ≥ 1

9. x ≥ 1 and y ≤ 1 10. 1∕3 ≤ x ≤ 1

In Exercises 11–14, a joint probability density function is

given by p(x, y) = 0.005x + 0.025y in R, the rectangle

0 ≤ x ≤ 10, 0 ≤ y ≤ 2, and p(x, y) = 0 else. Find the

probability that a point (x, y) satisfies the given conditions.

11. x ≤ 4 12. y ≥ 1

13. x ≤ 4 and y ≥ 1 14. x ≥ 5 and y ≥ 1

In Exercises 15–22, let p be the joint density function such

that p(x, y) = xy in R, the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 1,

and p(x, y) = 0 outsideR. Find the fraction of the population

satisfying the given constraints.

15. x ≥ 3 16. x = 1

17. x + y ≤ 3 18. −1 ≤ x ≤ 1

19. x ≥ y 20. x + y ≤ 1

21. 0 ≤ x ≤ 1, 0 ≤ y ≤ 1∕2

22. Within a distance 1 from the origin

PROBLEMS

23. Let x and y have joint density function

p(x, y) =

{

2

3
(x + 2y) for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 otherwise.

Find the probability that

(a) x > 1∕3. (b) x < (1∕3) + y.

24. The joint density function for x, y is given by

f (x, y) =

{

kxy for 0 ≤ x ≤ y ≤ 1,

0 otherwise.

(a) Determine the value of k.

(b) Find the probability that (x, y) lies in the shaded

region in Figure 16.58.

1
0

1

x

y
y = x

y =
√

x

Figure 16.58
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25. A joint density function is given by

f (x, y) =

{

kx2 for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1,

0 otherwise.

(a) Find the value of the constant k.

(b) Find the probability that (x, y) satisfies x + y ≤ 2.

(c) Find the probability that (x, y) satisfies x ≤ 1 and

y ≤ 1∕2.

26. A point is chosen at random from the region S in the

xy-plane containing all points (x, y) such that −1 ≤ x ≤

1,−2 ≤ y ≤ 2 and x − y ≥ 0 (“at random” means that

the density function is constant on S).

(a) Determine the joint density function for x and y.

(b) If T is a subset of S with area �, then find the prob-

ability that a point (x, y) is in T .

27. A probability density function on a square has constant

values in different triangular regions as shown in Fig-

ure 16.59. Find the probability that

(a) x ≥ 2

(b) y ≥ x

(c) y ≥ x and x ≥ 2

1 2 3 4

1

2

3

4

0.01

0.06

0.01

0.12

0.02

0.16

0.04

0.08

x (m)

y (m)

Figure 16.59: Probability density on a

square (per m2)

28. A health insurance company wants to know what pro-

portion of its policies are going to cost the company a

lot of money because the insured people are over 65 and

sick. In order to compute this proportion, the company

defines a disability index, x, with 0 ≤ x ≤ 1, where

x = 0 represents perfect health and x = 1 represents

total disability. In addition, the company uses a density

function, f (x, y), defined in such a way that the quantity

f (x, y) ΔxΔy

approximates the fraction of the population with dis-

ability index between x and x+Δx, and aged between y

and y+Δy. The company knows from experience that a

policy no longer covers its costs if the insured person is

over 65 and has a disability index exceeding 0.8. Write

an expression for the fraction of the company’s policies

held by people meeting these criteria.

29. The probability that a radioactive substance will decay

at time t is modeled by the density function

p(t) = �e−�t

for t ≥ 0, and p(t) = 0 for t < 0. The positive constant

� depends on the material, and is called the decay rate.

(a) Check that p is a density function.

(b) Two materials with decay rates � and � decay inde-

pendently of each other; their joint density function

is the product of the individual density functions.

Write the joint density function for the probabil-

ity that the first material decays at time t and the

second at time s.

(c) Find the probability that the first substance decays

before the second.

30. Figure 16.60 represents a baseball field, with the bases

at (1, 0), (1, 1), (0, 1), and home plate at (0, 0). The outer

bound of the outfield is a piece of a circle about the

origin with radius 4. When a ball is hit by a batter we

record the spot on the field where the ball is caught. Let

p(r, �) be a function in the plane that gives the density

of the distribution of such spots. Write an expression

that represents the probability that a hit is caught in

(a) The right field (region R).

(b) The center field (region C).

1 4

1

4

x

y

C

R

�

6

�

6

�

6

Figure 16.60

31. Two independent random numbers x and y between 0

and 1 have joint density function

p(x, y) =
{

1 if 0 ≤ x, y ≤ 1

0 otherwise.

This problem concerns the average z = (x+y)∕2, which

has a one-variable probability density function of its

own.

(a) Find F (t), the probability that z ≤ t. Treat sepa-

rately the cases t ≤ 0, 0 < t ≤ 1∕2, 1∕2 < t ≤ 1,

1 < t. Note that F (t) is the cumulative distribution

function of z.

(b) Find and graph the probability density function of

z.

(c) Are x and y more likely to be near 0, 1∕2, or 1?

What about z?
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Strengthen Your Understanding

In Problems 32–33, explain what is wrong with the state-

ment.

32. If p1(x, y) and p2(x, y) are joint density functions, then

p1(x, y) + p2(x, y) is a joint density function.

33. If p(w,ℎ) is the probability density function of the

weight and height of mothers discussed in Section 16.6,

then the probability that a mother weighs 60 kg and has

a height of 170 cm is p(60, 170).

In Problems 34–35, give an example of:

34. Values for a, b, c and d such that f is a joint density

function:

f (x, y) =

{

1 for a ≤ x ≤ b and c ≤ y ≤ d,

0 otherwise

35. A one-variable function g(y) such that f is a joint den-

sity function:

f (x, y) =

{

g(y) for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1,

0 otherwise

For Problems 36–39, let p(x, y) be a joint density function

for x and y. Are the following statements true or false?

36.
∫

b

a
∫

∞

−∞

p(x, y) dy dx is the probability that a ≤ x ≤ b.

37. 0 ≤ p(x, y) ≤ 1 for all x.

38.
∫

b

a

p(x, y) dx is the probability that a ≤ x ≤ b.

39.
∫

∞

−∞ ∫

∞

−∞

p(x, y) dy dx = 1.

Online Resource: Review problems and Projects




