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Abstract

In this note I present my variation on the proof of Euler’s Identity in which I try to minimize
background knowledge that is not presented in the note; there are no citations and I do not use
any “well-known” facts. I try to build the proof from “first principles” as much as possible.
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1 Preliminary Results

Proposition 1.1. Let m ∈ N. Then

lim
n→∞

mn

n!
= 0. (1.1)

Proof. The following inequality holds for all m,n ∈ N

mn

n!
≤

mm

(m− 1)!

1

n
. (1.2)

To prove the preceding inequality we notice that it is equivalent to mn(m− 1)! ≤ mm(n− 1)!. The
inequality is trivial if m = n. Assume m > n. Then n · · · (m − 1) ≤ mm−n, since the both sides
have the same number of factors and the factors on the left-hand side are smaller. Multiplying both
sides by mn(n−1)! yields the desired inequality. Assume m < n. Then mn−m ≤ m · · · (n−1), since
the both sides have the same number of factors and the factors on the left-hand side are smaller.
Multiplying both sides by mm(m− 1)! yields the desired inequality. It follows from (1.2) that for
arbitrary ǫ > 0 and n > (mm)/(ǫ(m − 1)!) we have (mn)/(n!) < ǫ. Hence, the limit in (1.1) is
proved using the definition of limit.

Theorem 1.2. Let r ∈ R+ and let I = [−r, r] or I = R. Let g : I → R be a continuous function.

Assume that there exists M ∈ R+ and m ∈ {0} ∪ N such that for all x ∈ I we have

∣

∣g(x)
∣

∣ ≤ M |x|m. (1.3)

Then for all x ∈ I we have
∣

∣

∣

∣

∫

x

0

g(t)dt

∣

∣

∣

∣

≤
M

m+ 1
|x|m+1. (1.4)

Proof. Assume that there exists M ∈ R+ and m ∈ {0}∪N such that (1.3) holds for all x ∈ I. From
the definition of the absolute value function it follows that (1.3) is equivalent to

−M |t|m ≤ g(t) ≤ M |t|m (1.5)

for all t ∈ I. Case 1. Assume x ∈ I and x > 0. Then for every t ∈ [0, x] we have that (1.5) holds
and we can drop the absolute value sign. By the monotonicity property of the definite integral we
get

−M

∫

x

0

tmdt ≤

∫

x

0

g(t)dt ≤ M

∫

x

0

tmdt.

Consequently

−
M

m+ 1
xm+1dt ≤

∫

x

0

g(t)dt ≤
M

m+ 1
xm+1,

which is equivalent to
∣

∣

∣

∣

∫

x

0

g(t)dt

∣

∣

∣

∣

≤
M

m+ 1
|x|m+1. (1.6)

Case 2. Assume x ∈ I and x < 0. Then for every t ∈ [x, 0] we have that (1.5) holds and we can
replace |t| by (−t). By the monotonicity property of the definite integral we get

−M

∫

0

x

(−t)mdt ≤

∫

0

x

g(t)dt ≤ M

∫

0

x

(−t)mdt
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and consequently

−
M

m+ 1
(−x)m+1dt ≤

∫ 0

x

g(t)dt ≤
M

m+ 1
(−x)m+1.

Multiplying the last expression by −1 and replacing (−x) by |x| we obtain

−
M

m+ 1
|x|m+1dt ≤

∫

x

0

g(t)dt ≤
M

m+ 1
|x|m+1,

which is equivalent to
∣

∣

∣

∣

∫

x

0

g(t)dt

∣

∣

∣

∣

≤
M

m+ 1
|x|m+1.

The preceding inequality and (1.6) prove that (1.4) holds for all x ∈ I.

Next we define three operations on functions inspired by the anti-derivative from the previous
theorem. For a continuous function g : R → R set

(Ig)(x) =

∫

x

0

g(t)dt,

(J g)(x) = 1−

∫

x

0

g(t)dt,

(Kg)(x) = 1 +

∫

x

0

g(t)dt.

Corollary 1.3. Let r ∈ R+ and let I = [−r, r] or I = R. Let f : I → R and g : I → R be

continuous functions. Assume that there exists M ∈ R+ and m ∈ {0} ∪ N such that for all x ∈ I
we have

∣

∣f(x)− g(x)
∣

∣ ≤ M |x|m. (1.7)

Then for all x ∈ I we have

∣

∣(If)(x)− (Ig)(x)
∣

∣ ≤
M

m+ 1
|x|m+1, (1.8)

∣

∣(J f)(x)− (J g)(x)
∣

∣ ≤
M

m+ 1
|x|m+1, (1.9)

∣

∣(Kf)(x)− (Kg)(x)
∣

∣ ≤
M

m+ 1
|x|m+1. (1.10)

Proof. To prove (1.8) we calculate

(If)(x)− (Ig)(x) =

∫

x

0

f(t)dt−

∫

x

0

g(t)dt =

∫

x

0

(

f(t)− g(t)
)

dt

and apply Theorem 1.2 to deduce (1.8) from (1.7). To prove (1.9) we calculate

∣

∣(J f)(x)− (J g)(x)
∣

∣ =

∣

∣

∣

∣

1−

∫

x

0

f(t)dt− 1 +

∫

x

0

g(t)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

x

0

(

f(t)− g(t)
)

dt

∣

∣

∣

∣

and apply Theorem 1.2 to deduce (1.9) from (1.7). To prove (1.10) we calculate

∣

∣(Kf)(x) − (Kg)(x)
∣

∣ =

∣

∣

∣

∣

1 +

∫

x

0

f(t)dt− 1−

∫

x

0

g(t)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

x

0

(

f(t)− g(t)
)

dt

∣

∣

∣

∣

and apply Theorem 1.2 to deduce (1.10) from (1.7).
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2 The Exponential Function

Theorem 2.1. Let r ∈ R+ be arbitrary. Then for all n ∈ N and all x ∈ [−r, r] we have
∣

∣

∣

∣

∣

ex −
n
∑

k=0

xk

k!

∣

∣

∣

∣

∣

≤ er
|x|n+1

(n+ 1)!
(2.1)

Proof. Part 1. First we establish a pattern how repeated application of the operation K starting
with the constant 1 creates a sequence of polynomials. We start by applying K to 1, then we apply
K to the result (K1)(x) and so on. We obtain the following sequence of polynomials

(K1)(x) = 1 +

∫

x

0

1dt = 1 + x, (2.2)

(K21)(x) = 1 +

∫

x

0

(1 + t)dt = 1 + x+
x2

2
, (2.3)

(K31)(x) = 1 +

∫

x

0

(

1 + t+
t2

2

)

dt = 1 + x+
x2

2
+

x3

3!
,

(K41)(x) = 1 +

∫

x

0

(

1 + t+
t2

2
+

t3

3!

)

dt = 1 + x+
x2

2
+

x3

3!
+

x4

4!
.

In general, for all n ∈ N we have

(Kn1)(x) = 1 +
x

1!
+

x2

2!
+ · · · +

xn

n!
=

n
∑

k=0

xk

k!
. (2.4)

Part 2. Let r > 0 be arbitrary. Then for all x ∈ [−r, r] we have
∣

∣ex
∣

∣ ≤ er.

Applying Theorem 1.2 to the preceding inequality yields
∣

∣ex − 1
∣

∣ ≤ er|x| (2.5)

for all x ∈ [−r, r]. The preceding inequality proves (2.1) for n = 0.
Part 3. In this part of the proof we use the fact that the operation K does not change the
exponential function. That is,

(K exp)(x) = 1 +

∫

x

0

etdt = 1 + ex − 1 = ex = exp(x).

Step 1. Apply K to both functions expx and 1 in (2.5) and use (1.10) to conclude

∣

∣(expx)− (K1)(x)
∣

∣ ≤
er

2!
|x|2 (2.6)

for all x ∈ [−r, r]. Since (2.2) holds, we see that (2.6) proves (2.1) for n = 1.
Step 2. Apply K to both functions expx and (K1)(x) in (2.6) and use (1.10) to conclude

∣

∣(expx)− (K21)(x)
∣

∣ ≤
er

3!
|x|3 (2.7)

for all x ∈ [−r, r]. Since (2.3) holds, we see that (2.6) proves (2.1) for n = 2.
Repeating these steps for a total of n times we deduce

∣

∣(exp x)− (Kn1)(x)
∣

∣ ≤
er

(n+ 1)!
|x|n+1.

Since (2.4) holds, the preceding inequality proves (2.1).
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Corollary 2.2. For all x ∈ R we have

ex =

∞
∑

k=0

1

k!
xk. (2.8)

Proof.

3 The Cosine and Sine Functions

In this section we utilize the reasoning very similar to the reasoning from Section 2 to deduce similar
conclusions for the cosine and sine function. Since we are dealing with two functions, instead of one
operation K used in Section 2, here we use two operations I and J and apply them successively.

Theorem 3.1. For all n ∈ N and all x ∈ R we have

∣

∣

∣

∣

cos x−

n
∑

k=0

(−1)k

(2k)!
x2k

∣

∣

∣

∣

≤
|x|2n+1

(2n+ 1)!
(3.1)

and
∣

∣

∣

∣

sinx−
n
∑

k=0

(−1)k

(2k + 1)!
x2k+1

∣

∣

∣

∣

≤
|x|2n+2

(2n+ 2)!
(3.2)

Proof. Part 1. First we establish a pattern how repeated application of the operations I and J
starting with the constant 1 creates a sequence of polynomials. We start by applying I to 1, then
we apply J to the result and so on. We obtain

(I1)(x) =

∫

x

0

1dt = x, (3.3)

((J ◦ I)1)(x) = 1−

∫

x

0

tdt = 1−
x2

2
, (3.4)

(I ◦ (J ◦ I)1)(x) =

∫

x

0

(

1−
t2

2

)

dt = x−
x3

3!
, (3.5)

((J ◦ I)21)(x) = 1−

∫

x

0

(

t−
t3

3!

)

dt = 1−
x2

2
+

x4

4!
, (3.6)

(I ◦ (J ◦ I)21)(x) =

∫

x

0

(

1−
t2

2
+

t4

4!

)

dt = x−
x3

3!
+

x5

5!
, (3.7)

((J ◦ I)31)(x) = 1−

∫

x

0

(

t−
t3

3!
+

t5

5!

)

dt = 1−
x2

2
+

x4

4!
−

x6

6!
,

(I ◦ (J ◦ I)31)(x) =

∫

x

0

(

1−
t2

2
+

t4

4!
−

t6

6!

)

dt = x−
x3

3!
+

x5

5!
−

x7

7!
.

In general, for all n ∈ N we have

((J ◦ I)n1)(x) = 1−
x2

2
+

x4

4!
− · · ·+

(−1)n

(2n)!
x2n =

n
∑

k=0

(−1)k

(2k)!
x2k (3.8)

and

I ◦ ((J ◦ I)n1)(x) = x−
x3

3!
+

x5

5!
− · · ·+

(−1)n

(2n + 1)!
x2n+1 =

n
∑

k=0

(−1)k

(2k + 1)!
x2k+1 (3.9)
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Part 2. The basic property of the sine function is that for all x ∈ R we have
∣

∣− sinx
∣

∣ ≤ 1.

Here g(x) = − sinx, M = 1 and m = 0 in (1.3). Theorem 1.2 applied to the preceding inequality
yields

∣

∣(cos x)− 1
∣

∣ ≤ |x| (3.10)

for all x ∈ R. Now we apply Theorem 1.2 again to get

∣

∣(sinx)− x
∣

∣ ≤
1

2
|x|2 (3.11)

for all x ∈ R. Inequalities (3.10) and (3.11) prove inequalities (3.1) and (3.2) for n = 0.
Part 3. In this part of the proof we use the following properties of the operations I and J

(J sin)(x) = cos(x) and (I cos)(x) = sin(x).

Step 1. We apply J to both functions sinx and x = (I1)(x) in the difference in (3.11) and use
(1.9) to conclude

∣

∣(cos x)− ((J ◦ I)1)(x)
∣

∣ ≤
1

3!
|x|3. (3.12)

Further, we apply I to the preceding inequality and use (1.8) to obtain

∣

∣(sinx)− (I ◦ (J ◦ I)1)(x)
∣

∣ ≤
1

4!
|x|4. (3.13)

Using the equalities established in Part 1 of this proof we see that (3.12) and (3.13) prove (3.1)
and (3.2) for n = 1.
Step 2. We apply J to both functions in the difference in (3.13) and use (1.9) to conclude

∣

∣(cos x)− ((J ◦ I)21)(x)
∣

∣ ≤
1

5!
|x|5. (3.14)

Further, we apply I to the preceding inequality and use (1.8) to obtain

∣

∣(sin x)− (I ◦ (J ◦ I)21)(x)
∣

∣ ≤
1

6!
|x|6. (3.15)

Using the equalities established in Part 1 of this proof we see that (3.14) and (3.15) prove (3.1)
and (3.2) for n = 2.
Step n. Repeating these steps for a total of n times we obtain

∣

∣(cos x)− ((J ◦ I)n1)(x)
∣

∣ ≤
1

(2n + 1)!
|x|2n+1.

and
∣

∣(sinx)− (I ◦ (J ◦ I)n1)(x)
∣

∣ ≤
1

(2n + 2)!
|x|2n+2.

With the equalities established in Part 1 of this proof, the preceding two inequalities prove (3.1)
and (3.2).

Corollary 3.2. For all x ∈ R we have

cosx =
∞
∑

k=0

(−1)k

(2k)!
x2k and sinx =

∞
∑

k=0

(−1)k

(2k + 1)!
x2k+1. (3.16)

6



4 Euler’s Identity

In Corollary 2.2 we proved that for all x ∈ R we have

ex =

∞
∑

n=0

1

n!
xn. (4.1)

A remarkable feature of this equality is that the value ex of the exponential function is expressed
as a sum of the nonnegative powers of x; nonnegative powers of x being the simplest functions of
x.

The series representation of ex in (4.1) can be used to understand the exponentiation with
imaginary numbers.

Recall that the imaginary unit i is defined as a complex number whose square is −1. That is
i2 = −1. A general complex number z is commonly represented as a sum z = a+ ib, where a and b
are real numbers. In this representation a is called the real part of z and b is called the imaginary
part of z. Doing calculations with complex numbers, the objective is always to represent a complex
number as a sum of its real and imaginary part multiplied by i. For example, when multiplying
two complex numbers z = a+ ib and w = c+ id the product is

zw = (a+ ib)(c+ id) = ac+ iad+ ibc+ i2bd = (ac− bd) + i(ad+ bc).

Thus, the real part of the product zw = (a + ib)(c + id) is the real number ac − bd while the
imaginary part of the product is ad+ bc.

So we ask:

For a real number t, what is the real part and what is the imaginary

part of the complex number e
it?

To answer this question we resort to the series representation (4.1), we replace x by it and
define

eit =

∞
∑

n=0

1

n!
(it)n. (4.2)

Now we do algebra with the infinite series with complex numbers (it)k with k ∈ {0}∪N. Since the
multiplication of complex numbers works the same as with real numbers we have

(it)n = intn where n ∈ {0} ∪ N.

Now we need to understand the complex numbers in with n ∈ {0} ∪ N.

i0 = 1, i1 = i, i2 = −1, i3 = −i,

i4 = 1 i5 = i i6 = −1 i7 = −i

i8 = 1 i9 = i i10 = −1 i11 = −i.

We distinguish two cases: n is even, that is n = 2k with k ∈ {0}∪N and n is odd, that is n = 2k+1
with k ∈ {0} ∪ N. For n even we have

in = i2k =
(

i2
)k

= (−1)k. (4.3)
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For n odd we have
in = i2k+1 = ii2k = i

(

i2
)k

= i(−1)k. (4.4)

Now we are ready to further expand (4.2):

eit =

∞
∑

n=0

1

n!
(it)n

=
∞
∑

n=0

in

n!
tn algebra (it)n = intn

=
∑

n is even

in

n!
tn +

∑

n is odd

in

n!
tn separate even and odd

=

∞
∑

k=0

i2k

(2k)!
t2k +

∞
∑

k=0

i2k+1

(2k − 1)!
t2k−1 n = 2k for even and n = 2k + 1 for odd

=

∞
∑

k=0

(−1)k

(2k)!
t2k + i

∞
∑

k=0

(−1)k

(2k − 1)!
t2k−1 see (4.3) and (4.4)

= (cos t) + i(sin t). see (3.16)

Hence, we proved Euler’s identity

e
it = (cos t) + i(sin t) for all t ∈ R
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