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Abstract

In this note I present my variation on the proof of Euler’s Identity in which I try to minimize
background knowledge that is not presented in the note; there are no citations and I do not use
any “well-known” facts. I try to build the proof from “first principles” as much as possible.



1 Preliminary Results

Proposition 1.1. Let m € N. Then
..om
lim P 0. (1.1)

Proof. The following inequality holds for all m,n € N

m™ 1
— < — 1.2
n! = (m—1)In (12)

To prove the preceding inequality we notice that it is equivalent to m™(m — 1)! < m™(n —1)!. The
inequality is trivial if m = n. Assume m > n. Then n---(m — 1) < m™ ", since the both sides
have the same number of factors and the factors on the left-hand side are smaller. Multiplying both
sides by m™(n—1)! yields the desired inequality. Assume m < n. Then m"™"™ <m---(n—1), since
the both sides have the same number of factors and the factors on the left-hand side are smaller.
Multiplying both sides by m™(m — 1)! yields the desired inequality. It follows from (1.2) that for
arbitrary € > 0 and n > (m™)/(e(m — 1)!) we have (m")/(n!) < e. Hence, the limit in (1.1) is
proved using the definition of limit. O

Theorem 1.2. Let r € Ry and let I = [—r,r] or I =R. Let g: I — R be a continuous function.
Assume that there exists M € Ry and m € {0} UN such that for all x € I we have

lg()| < Mlz|™. (13)

Then for all x € I we have

/Omg(t)dt‘ < miﬂmmﬂ. (1.4)

Proof. Assume that there exists M € Ry and m € {0} UN such that (1.3) holds for all € I. From
the definition of the absolute value function it follows that (1.3) is equivalent to

—MIt|™ < g(t) < M[t|™ (1.5)

for all t € I. Case 1. Assume z € [ and x > 0. Then for every ¢ € [0, z] we have that (1.5) holds
and we can drop the absolute value sign. By the monotonicity property of the definite integral we

get
€T x x
M / fmt < / g(t)dt < M / (.
0 0 0
Consequently
M x
——— _a™tlgt §/ g(t)dt < ™t
which is equivalent to
’ M|t 1.6
tdt| < —— . .
[ st < oo (16)

Case 2. Assume z € I and x < 0. Then for every t € [z,0] we have that (1.5) holds and we can
replace |t| by (—t). By the monotonicity property of the definite integral we get

—M/:(—t)mdt < /xog(t)dt < M/xo(—t)mdt



and consequently

M (—x)m+1dt§/og(t)dt§ M (—z)™+L,

T m+1 " m—+1
Multiplying the last expression by —1 and replacing (—z) by |x| we obtain

M

- m+1dt < ’ t dt < m~+1
el tar < [ gt < e,
which is equivalent to
“’ M
t)dt| < ———|z|™ 1.
[ st < 2l
The preceding inequality and (1.6) prove that (1.4) holds for all = € I. O

Next we define three operations on functions inspired by the anti-derivative from the previous
theorem. For a continuous function g : R — R set

(Zg)(x) = /0 o(t)dt,
(To)w) =1- /O o(t)dt,
(Kg)(a) =1+ /O " g(tydr.

Corollary 1.3. Let r € Ry and let I = [-r,r) or I = R. Let f : I - R and g : I — R be
continuous functions. Assume that there exists M € Ry and m € {0} UN such that for all x € I
we have

|f(x) = g(z)| < Mlz[™. (1.7)
Then for all x € I we have
(Zf)(x) — (Zg)(z)| < s 1IJEI’”“, (1.8)
(TN~ (T9)(@)| < == fal™*, (19)
(CF) (@) — (Kg)(2)] < —o[af+1. (1.10)
m+1

Proof. To prove (1.8) we calculate

TN - To)) = [ s [t = [ (10~ g(o)a
and apply Theorem 1.2 to deduce (1.8) from (1.7). To prove (1.9) we calculate

[ - ato)ar

and apply Theorem 1.2 to deduce (1.9) from (1.7). To prove (1.10) we calculate

INCE g<t>>dt\

and apply Theorem 1.2 to deduce (1.10) from (1.7). O

(T (@) = (T9)(x)| = ‘1—/Oxf(t)dt— 1—|—/0xg(t)dt' —

|((Kf)(z) — (Kg)(@)| = ‘1 + /Oxf(t)dt ~1- /Oxg(t)dt' =




2 The Exponential Function

Theorem 2.1. Let r € Ry be arbitrary. Then for alln € N and all © € [—r, 7] we have

e* _Zkl

Proof. Part 1. First we establish a pattern how repeated application of the operation K starting
with the constant 1 creates a sequence of polynomials. We start by applying K to 1, then we apply
K to the result (K1)(z) and so on. We obtain the following sequence of polynomials

‘ ’n+1

(n+1)! (2.1)

(K1)(z) =1+ /0 ldt =1+, (2.2)

(K%1)(z) :1+/0x(1 +t)dt:1+x+%2, (2.3)

T t2 2 3
(IC31)(a:):1+/ <1+t+ )dt_1+x+x_+§'7
0

T t2 t3 2 3 4
(IC41)(:13):1+/ I+i+ 5+ dt—1+:c+””_+$_+~””_
0 2 3! 4!

In general, for all n € N we have

2 " n .Z'k
,+§+ +F:ZH' (2.4)
k=0

(K"1)(@) = 1+ 7

Part 2. Let r > 0 be arbitrary. Then for all x € [—r,r| we have
‘ex | <e.
Applying Theorem 1.2 to the preceding inequality yields
le® — 1| < e"|z] (2.5)

for all € [—r,r]. The preceding inequality proves (2.1) for n = 0.
Part 3. In this part of the proof we use the fact that the operation X does not change the
exponential function. That is,

(Kexp)(z) =1 +/ eldt =1+ e” — 1 =e” = exp(x).
0

Step 1. Apply K to both functions expz and 1 in (2.5) and use (1.10) to conclude
(exp) — (K1)(@)] < & Jal? (26)

for all € [—r,r]. Since (2.2) holds, we see that (2.6) proves (2.1) for n = 1.
Step 2. Apply K to both functions exp z and (K1)(z) in (2.6) and use (1.10) to conclude
e?”
(exp) — (K*1)()] < ol (27)
for all x € [—r,r]. Since (2.3) holds, we see that (2.6) proves (2.1) for n = 2.

Repeating these steps for a total of n times we deduce

|(expa) — (K"1)(2)] < "

e'f‘
(n+1)!
Since (2.4) holds, the preceding inequality proves (2.1). O



Corollary 2.2. For all x € R we have
=1
=> F (2.8)
k=0

Proof. O

3 The Cosine and Sine Functions

In this section we utilize the reasoning very similar to the reasoning from Section 2 to deduce similar
conclusions for the cosine and sine function. Since we are dealing with two functions, instead of one
operation K used in Section 2, here we use two operations Z and J and apply them successively.

Theorem 3.1. For alln € N and all x € R we have

cos T — 5" (_1)ka:2k < ﬂ (3.1)
prt (2k)! ~ (2n+1)! '
and i -
: G DA e B U s
— < 3.2
i kZ:O(%Jrl)!x = 2n +2)! (32)

Proof. Part 1. First we establish a pattern how repeated application of the operations Z and J
starting with the constant 1 creates a sequence of polynomials. We start by applying Z to 1, then
we apply J to the result and so on. We obtain

@) = [ 1= (33)
T 33‘2
(ToI)N )()—1—/0 tdt=1- =, (3.4)
T 2 1'3
(Io(on)l)(:p):/O (1-%)&::::-5, (3.5)
T 3 3:2 33‘4
((on)zl)(a:):l—/O <t—%>dt:1—7+z, (3.6)
x 2 4 1'3 1'5
R e A e 5.7)

T t3 t5 x2 JZ’4 .Z'6
3 1 _ _ — p— -
(T 0T 1)(@) = 1 /0< 3,+5,>dt_1 ap
x t2 t4 t6 $3 $5 IIJ'?
3 _ _
(IO(jOI) 1)(515)—/0(1— +E—§>dt xr — g—Fa—?

In general, for all n € N we have

33‘2 3:.4 1\ n o/ 1\k
(TeD)"N(@)=1- 5+ 55—+ ((23, 2 = 2 ((2]3! 2k (3.8)
and 3 5 n k
o((FJoI)"1)(x) = a — ‘;—' + % — %xmﬂ _ kz_o (2(];i)1)!x2k+1 (3.9)



Part 2. The basic property of the sine function is that for all x € R we have
‘— sina:| <1.

Here g(z) = —sinz, M =1 and m = 0 in (1.3). Theorem 1.2 applied to the preceding inequality
yields
|(cosz) — 1| < || (3.10)

for all x € R. Now we apply Theorem 1.2 again to get
1
|(sinz) — 2| < 5]3:\2 (3.11)

for all z € R. Inequalities (3.10) and (3.11) prove inequalities (3.1) and (3.2) for n = 0.
Part 3. In this part of the proof we use the following properties of the operations Z and J

(T sin)(x) = cos(z) and (Zcos)(x) = sin(z).
Step 1. We apply J to both functions sinz and = = (Z1)(x) in the difference in (3.11) and use

(1.9) to conclude
|(cosz) — (T o T)1)(z)| < %|:17|3 (3.12)

Further, we apply Z to the preceding inequality and use (1.8) to obtain
1
|(sinz) — (Zo (J o T)1)(z)| < E|x|4. (3.13)

Using the equalities established in Part 1 of this proof we see that (3.12) and (3.13) prove (3.1)
and (3.2) for n = 1.
Step 2. We apply J to both functions in the difference in (3.13) and use (1.9) to conclude

1
|(cosz) — ((J 01)21)(33)‘ < 5]&;\5 (3.14)
Further, we apply Z to the preceding inequality and use (1.8) to obtain
1
|(sinz) — (Zo (J 0 T)*1)(z)| < @|:17|6. (3.15)

Using the equalities established in Part 1 of this proof we see that (3.14) and (3.15) prove (3.1)
and (3.2) for n = 2.
Step n. Repeating these steps for a total of n times we obtain

1

)(az)‘ < m’x‘%ﬂ'

‘(cos z)— (JoI)"1

and
1

)(z)] Sm’

With the equalities established in Part 1 of this proof, the preceding two inequalities prove (3.1)
and (3.2). O

((sinz) — (Zo (T oZI)"1 x|,

Corollary 3.2. For all x € R we have

cosxT = i (_1)kx2k and sinx = i ﬂx%ﬂ (3.16)
poard (2k)! — (2k +1)! ’ ’



4 Euler’s Identity

In Corollary 2.2 we proved that for all x € R we have

o0

e’ = Z %az" (4.1)
n=0

A remarkable feature of this equality is that the value e” of the exponential function is expressed
as a sum of the nonnegative powers of z; nonnegative powers of x being the simplest functions of
T.

The series representation of e” in (4.1) can be used to understand the exponentiation with
imaginary numbers.

Recall that the imaginary unit ¢ is defined as a complex number whose square is —1. That is
i> = —1. A general complex number z is commonly represented as a sum z = a + ib, where a and b
are real numbers. In this representation a is called the real part of z and b is called the imaginary
part of z. Doing calculations with complex numbers, the objective is always to represent a complex
number as a sum of its real and imaginary part multiplied by i. For example, when multiplying

two complex numbers z = a + b and w = ¢ + id the product is
2w = (a+ib)(c+id) = ac+ iad + ibc + i2bd = (ac — bd) + i(ad + bc).

Thus, the real part of the product zw = (a + ib)(c + id) is the real number ac — bd while the
imaginary part of the product is ad + be.
So we ask:

For a real number ¢, what is the real part and what is the imaginary

part of the complex number 6”?

To answer this question we resort to the series representation (4.1), we replace = by it and
define

et =) —(it)". (4.2)

Now we do algebra with the infinite series with complex numbers (it)¥ with k € {0} UN. Since the
multiplication of complex numbers works the same as with real numbers we have

(it)" =4"t" where n e {0}UN.

Now we need to understand the complex numbers " with n € {0} UN.

=1, t=4, P=-1, 3=,
it=1 P =i i = -1 il =
f=1 =i i"=-1 i""=-i

We distinguish two cases: n is even, that is n = 2k with k£ € {0}UN and n is odd, that is n = 2k+1
with k& € {0} UN. For n even we have

i =i = ()" = (=1)F. (4.3)



For n odd we have
1

Now we are ready to further expand (4.2):

. 1
it - n
e = Z p (it)
n=0
= n!
in n
_ n n
= > ot >, ot
n is even n is odd
0 Z2k ” Z2k+1 o1
= t o
;(%)v +;(2k—1)'
_ i (_1)kt2k +i§: (=1* 2k—1
2k)! 2k — 1)

Hence, we proved Euler’s identity

no_ Z'2k2+1 — Z'L2k —

i(i%)" = i(—1)*,

algebra (it)" = i"t"

separate even and odd
n = 2k for even and n = 2k + 1 for odd

see (4.3) and (4.4)

see (3.16)

"' = (cost) +i(sint) forall t€R




