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The symbol R denotes the set of all real numbers. Let a, b ∈ R be such that
a < b. Then we use the following terminology and notation:

set name notation
{x ∈ R : a < x < b} open finite interval (a, b)
{x ∈ R : a ≤ x ≤ b} closed finite interval [a, b]
{x ∈ R : a ≤ x < b} half-open finite interval [a, b)
{x ∈ R : a < x ≤ b} half-open finite interval (a, b]
{x ∈ R : a < x} open infinite interval (a,+∞)
{x ∈ R : a ≤ x} closed infinite interval [a,+∞)
{x ∈ R : x < a} open infinite interval (−∞, a)
{x ∈ R : x ≤ a} closed infinite interval (−∞, a]

R infinite interval R

The term interval relates to any of the above sets.
Let I be an interval. The general (non-homogeneous) second order linear

differential equation is

y′′(x) + P (x)y′(x) +Q(x)y(x) = R(x), x ∈ I, (1)

Note that this equation is “normalized”, that is the coefficient with the second
derivative is 1. This is very important since the theorems below do not apply
directly to equations that are not normalized.

Theorem 1. Let P,Q and R be continuous real valued functions defined on an
interval I. Let x0 be any number in I and let y0 and v0 be any real numbers.
Then the initial value problem

y′′(x) + P (x)y′(x) +Q(x)y(x) = R(x), x ∈ I,

y(x0) = y0, y′(x0) = v0,
(2)

has a unique solution defined on the interval I.
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2 Homogeneous Equations

This theorem states that there exists one and only one function y : I → R

which satisfies the equation (1) and such that y(x0) = y0 and y′(x0) = v0. Clearly
the function y : I → R is a continuous function and it has continuous first and
second derivative on the interval I. If the interval I is not specifically given than
you need to determine the maximum interval on which all the functions P,Q and
R are continuous and which contains the point x0 and work with that interval.

We will mostly be interested in homogeneous second order linear differential
equations

y′′(x) + P (x)y′(x) +Q(x)y(x) = 0, x ∈ I.

The natural problem is to find all solutions of this equation. The following
theorem helps with this task. I nicknamed it “from two all” (FTA or more
mathematically “F2∀”).

Theorem 2. Let P and Q be continuous real valued functions defined on an
interval I. Let y1 : I → R and y2 : I → R be linearly independent solutions of
the homogeneous equation

y′′(x) + P (x)y′(x) +Q(x)y(x) = 0, x ∈ I. (3)

Then all solutions of the homogeneous equation (3) are given by the general so-
lution formula

y(x) = c1y1(x) + c2y2(x), x ∈ I,

where c1 and c2 are arbitrary constants.

Recall that two functions f : I → R and g : I → R are linearly dependent
on I if one is a constant multiple of the other. Otherwise-that is, if neither is
a constant multiple of the other-they are called linearly independent on I. Also
recall that if f(x) = 0 for all x ∈ I, then f and g are linearly dependent for every
function g, since f = 0 · g. The functions f and g are linearly independent on I

if C1f(x) + C2g(x) = 0 for all x ∈ I implies that C1 = C2 = 0.
One way to verify whether two solutions of (3) are linearly independent is to

check their Wronskian: For two differentiable functions f : I → R and g : I → R

the Wronskian W (f, g) : I → R is defined by

W (f, g)(x) =

∣

∣

∣

∣

f(x) g(x)
f ′(x) g′(x)

∣

∣

∣

∣

= f(x)g′(x)− g(x)f ′(x), x ∈ I.

Theorem 3. Let P and Q be continuous real valued functions defined on an
interval I. Let y1 : I → R and y2 : I → R be solutions of the homogeneous
equation (3). Then, either W (y1, y2)(x) = 0 for all x ∈ I (in this case y1 and
y2 are linearly dependent), or else W (y1, y2)(x) 6= 0 for all x ∈ I (in this case y1
and y2 are linearly independent).
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A pair of linearly independent solutions of the homogeneous equation (3) is
called a fundamental set of solutions of (3).

Example 4. Let m, c and k be real numbers and m 6= 0. Consider the homoge-
neous equation with constant coefficients

my′′(x) + cy′(x) + ky(x) = 0, x ∈ I. (4)

Sincem 6= 0, dividing bym we get a normalized equation with coefficients P (x) =
c

m
and Q(x) = k

m
. Since these functions are continuous on entire real line it is

natural to take I = R. Substituting y(x) = erx in (4) you can find that the
function erx is a solution of (4) if and only if r is a root of the quadratic equation

mr2 + cr + k = 0. (5)

If (5) has two distinct roots r1 and r2 we get two linearly independent solutions
of (4):

y1(x) = er1x and y2(x) = er2x. (6)

If r1 and r2 are real numbers, then the solutions in (6) are real and we are done.
If r1 and r2 are non-real numbers, then the solutions in (6) are not real valued
functions and cannot be used, since we seek real valued solutions only.

If r1 and r2 are non-real numbers, then there exist real numbers α and β 6= 0
such that r1 = α + iβ and r1 = α − iβ. Here i is the imaginary unit: i2 = −1.
Using the Euler’s formula

eix = cos(x) + i sin(x), x ∈ R,

you can show that the real valued functions

y1(x) = eαx cos(βx) and y2(x) = eαx sin(βx) (7)

are linearly independent solutions of (4).
If (5) has only one real root r1 then two linearly independent solutions of (4)

are the functions
y1(x) = er1x and y2(x) = xer1x. (8)

Example 5. Let p and q be real numbers. Consider the homogeneous equation

x2y′′(x) + pxy′(x) + qy(x) = 0, x ∈ I. (9)

To get a normalized form of the equation I have to divide by x2. I get a normalized
equation with coefficients P (x) = p

x
and Q(x) = q

x2 . Since these functions are
continuous on the interval (0,+∞), it is natural to take I = (0,+∞).
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Substituting y(x) = xr in (9) you can find that the function xr is a solution
of (9) if and only if r is a root of the quadratic equation

r(r − 1) + pr + q = 0. (10)

If (10) has two distinct roots r1 and r2 we get two linearly independent solutions
of (9):

y1(x) = xr
1 and y2(x) = xr

2 , x > 0. (11)

If r1 and r2 are real numbers, then the solutions in (11) are real and we are done.
If r1 and r2 are non-real numbers, then the solutions in (11) are not real valued
functions and cannot be used, since we seek real valued solutions only.

If r1 and r2 are non-real numbers, then there exist real numbers α and β 6= 0
such that r1 = α + iβ and r1 = α− iβ. Using the Euler’s formula again you can
show that the real valued functions

y1(x) = xα cos(β ln(x)) and y2(x) = xα sin(β ln(x)), x > 0, (12)

are linearly independent solutions of (4).
If (10) has only one real root r1 then two linearly independent solutions of

(9) are the functions

y1(x) = xr
1 and y2(x) = xr

1 ln(x). (13)

Remark 6. Rather then doing all the calculations required in Examples 4 and 5
by hand, it is convenient to use the computer algebra system Mathematica to do
calculations for us. Another reason to use Mathematica is that we will encounter
second order homogeneous linear equations that we can not solve using simple
tricks as in Examples 4 and 5. The Mathematica’s library of functions is huge
and it can find solutions in terms of functions that you have not encountered
before. Mathematica can find the general solutions for a huge class of second
order homogeneous linear equations. Very often the solution will be in terms of
the functions that you are not familiar with. In that case you can useMathematica
to plot unfamiliar functions and get some idea about behaviour of these functions.
The only problem is that by default Mathematica works with complex valued
functions and it sometimes takes a special effort to get Mathematica to write
a solution in terms of real valued functions. Mathematica commands that are
helpful to get real valued solutions are ComplexExpand, Re, Im, and Simplify

with specific restrictions on the variable.

Problem 7. Consider the equation

y′′(x)− y(x) = 0. (14)
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(a) Find the general solution of the equation (14).

(b) What is the natural interval I on which the equation (14) is to be consid-
ered?

(c) Find the solution of the equation (14) which satisfies y(0) = 0 and y′(0) = 1.

(d) Find the solution of the equation (14) which satisfies y(0) = 1 and y′(0) = 0.

(e) Find all solutions of the equation (14) which are bounded on the interval
[0,+∞). Are there any solutions of the equation (14) which are bounded
on R?

Problem 8. Consider the equation

y′′(x) + y(x) = 0 . (15)

(a) Find the general solution of the equation (15).

(b) What is the natural interval I on which the equation (15) is to be consid-
ered?

(c) Find the solution of the equation (15) which satisfies y(0) = 0 and y′(0) = 1.

(d) Find the solution of the equation (15) which satisfies y(0) = 1 and y′(0) = 0.

Remark 9. Because of the similarity of Problems 7 and 8, the solution obtained
in Problem 7 (c) is called hyperbolic sine : sinh(x) = ex−e−x

2
, and the solution

obtained in Problem 7 (d) is called hyperbolic cosine : cosh(x) = ex+e−x

2
. Show

that sinh and cosh are linearly independent on R. Therefore sinh and cosh form
a fundamental set of solutions of (14).

Problem 10. Consider the equation

x2y′′(x) + xy′(x)− y(x) = 0 . (16)

(a) Find the general solution of the equation (16). (Use the method of Example
5. Do not use Mathematica.)

(b) What is the natural interval I on which the equation (16) is to be consid-
ered?

(c) Find the solution of the equation (16) which satisfies y(0) = 0 and y′(0) = 1.

(d) Does Theorem 1 guarantees the existence of the solution of the equation
(16) which satisfies y(0) = 0 and y′(0) = 1?
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(e) Does there exist a solution of the equation (16) which satisfies y(0) = 1 and
y′(0) = 0?

(f) Find all solutions of the equation (16) which are bounded on the interval
(0, 1). Are there any solutions of the equation (16) which are bounded on
(0,+∞)?

(g) Use Mathematica to find a general solution of the equation (16). Have in
mind that complex valued functions are not acceptable as solutions. Which
fundamental set of solutions of (16) is suggested byMathematica’s solution?
Is there an easy modification of the general solution offered by Mathematica
to make it acceptable? Explain.

Problem 11. Consider the equation

x2y′′(x) + xy′(x) + y(x) = 0 . (17)

(a) Find the general solution of the equation (17).

(b) What is the natural interval I on which the equation (17) is to be consid-
ered?

(c) Find all solutions of the equation (17) which are bounded on (0,+∞).

Problem 12. Consider the equation

y′′(x)− xy(x) = 0 . (18)

(a) Find the general solution of the equation (18). (Use Mathematica.)

(b) What is the natural interval I on which the equation (18) is to be consid-
ered?

(c) Use Mathematica to plot the functions in the fundamental set of solutions
used in (a). Based on these graphs, can you informally identify all solutions
of the equation (18) which are bounded on R?

(d) Find the solution of the equation (18) which satisfies y(0) = 0 and y′(0) = 1.
Find the solution of the equation (18) which satisfies y(0) = 1 and y′(0) = 0.

(e) Compare the behaviour of the solutions in the fundamental set of solutions
used in (a) and the solutions found in (d) to the solutions of Problems 7
and 8. (Use Remark 9.)


