LINEAR OPERATORS

BRANKO CURGUS

Throughout this note V is a vector space over a scalar field F. N denotes
the set of positive integers and i, 7, k,I,m,n,p € N.

1. LINEAR OPERATORS

In this section U, V and W are vector spaces over a scalar field .

1.1. The definition and the vector space of all linear operators. A
function T : ¥V — W is said to be a linear operator if it satisfies the following
conditions:

VueV YoeV  T(u+v)=T(u)+ f(v), (1.1)

VaeF VYveV T(aw) = aT(v). (1.2)

The property (1.1) is called additivity, while the property (1.2) is called
homogeneity. Together additivity and homogeneity are called linearity.

Denote by L£(V, W) the set of all linear operators from V to V. Define

the addition and scaling in £(V,W). For S,T € L(V,W) and a € F we
define

(S+T)(v)=Sw)+T(v), VoeV, (1.3)
(aT)(v) = aT(v), YveV. (1.4)

Notice that two plus signs which appear in (1.3) have different meanings.
The plus sign on the left-hand side stands for the addition of linear operators
that is just being defined, while the plus sign on the right-hand side stands
for the addition in W. Notice the analogous difference in empty spaces
between a and 7" in (1.4). Define the zero mapping in £(V, W) to be

OL(V,W)(U) = Oy, Yove.
For T € L(V,W) we define its opposite operator by
(=T)(v) = =T (v), VoveV.

Proposition 1.1. The set L(V, W) with the operations defined in (1.3),
and (1.4) is a vector space over F.

For T € L(V,W) and v € V it is customary to write T'v instead of T'(v).
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Example 1.2. Assume that a vector space V is a direct sum of its subspaces
U and W, that is V =U & W. Define the function P : V — V by

Pv=w & v=ut+w, ueld, weW.
Then P is a linear operator. It is called the projection of V onto W parallel
to U; it is denoted by Pyyy-

The definition of the linearity of a function between vector spaces is ex-
pressed in the standard functional notation. The next proposition states
that a function between vector spaces is linear if and only if its graph is
a subspace of the direct product of the domain and the codomain of that
function.

Proposition 1.3. Let V and W be vector spaces over a scalar field F. Let
f:V =W be a function and denote by F' the graph of f; that is let

F = {(v,w) ceVxW :veV and w:f(v)} CVxW.

The function f is linear if and only if the set F is a subspace of the vector
space V xXW.

Proposition 1.4. Let V and W be vector spaces over a scalar field F. Let
T e LIV,W), let G be a subspace of V and let H be a subspace of W. Then

T(G) ={weW : Jveg such that w=Tv}
is a subspace of W and
T ' H)={veV:TveH}
is a subspace of V.

1.2. Composition, inverse, isomorphism. In the next two propositions
we prove that the linearity is preserved under composition of linear operators
and under taking the inverse of a linear operator.

Proposition 1.5. Let S: U — V and T : V — W be linear operators. The
composition T oS : U — W is a linear operator.

Proof. Prove this as an exercise. O

When composing linear operators it is customary to write simply TS
instead of T'o0 S.

The identity function on V is denoted by Iy. It is defined by Iy(v) = v
for all v € V. It is clearly a linear operator.

Proposition 1.6. Let T :V — W be a linear operator which is a bijection.
Then the inverse T™1 : W — V of T is a linear operator.

Proof. Since T is a bijection, from what we learned about function, there
exists a function S : W — V such that ST = Iy, and T'S = Iy. Since T is
linear and T'S = Iy we have

T(aSz + BSy) = aT(Sz) + BT(Sy) = a(TS)z + B(T'S)y = az + By
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for all a, 8 € F and all x,y € W. Applying S to both sides of
T(aSz + BSy) = az + By
we get
(ST)(cSz + BSy) = S(ax + By) Va,B €F Va,x € W.
Since ST = Iy, we get
aSz + Sy = S(az + By) Vo, €F Vx,ycW,

thus proving the linearity of S. Since by definition S = T~! the proposition
is proved. O

A linear operator T : V — W which is a bijection is called an isomorphism
between vector spaces V and W.

By Proposition 1.6 each isomorphism is invertible and its inverse is also
an isomorphism.

In the next theorem we introduce the most important isomorphism be-
tween a finite-dimensional space V and a space F” where n = dim V.

Theorem 1.7. Let V be a finite dimensional vector space over F | let n =
dimV and let B = {b1,...,by} be a basis for V. The function Cg : V — F"
defined by: for allv eV
aq
Cg(v) :=a where a= : eF" and v=aiby+ -+ apby,
Qo

s an isomorphism between V and F".

It is important to point out that the formula for the inverse (Cg) ™! : F* —
V of Cp is given by

a1 n a1
Ccp)t | = Zajvj, for all D] e F™. (1.5)
oy, J=1 o,

Notice that (1.5) defines a function from F™ to V even if B is not a basis of

V.

Example 1.8. Inspired by the definition of Cz and (1.5) we define a general
operator of this kind. Let V and W be vector spaces over F. Let V be finite
dimensional, n = dimV and let B be a basis for V. Let C = (wy,...,wy)
be any n-tuple of vectors in WW. The entries of an n-tuple can be repeated,
they can all be equal, for example to 0y. We define the linear operator
ng V=W by

aq

LE(w) = Z W where D | = Cg(v). (1.6)
j=1

Qn
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In fact, ng 'V — W is a composition of Cz : V — F"™ and the operator
F™ — W defined by

& n &
e Zgjwj for all D eF. (1.7)
&n 7=l &n

It is easy to verify that (1.7) defines a linear operator.

Denote by £ the standard basis of F", that is the basis which consists of
the columns of the identity matrix I,,. Then Cp = L? and (Cg)~' = Lg.

Exercise 1.9. Let V and W be vector spaces over F. Let V be finite
dimensional, n = dimV and let B be a basis for V. Let C = (wy,...,w,) be
a list of vectors in W with n entries.

(a) Characterize the injectivity of L5 : V — W.

(b) Characterize the surjectivity of L5 : V — W.

(c) Characterize the bijectivity of LE : V — W.

(d) If L5 : V — W is an isomorphism, find a simple formula for (L5)~!.

1.3. The nullity-rank theorem. Let T': V — W is be a linear operator.
The linearity of T" implies that the set

nulT:{UGV:TUZOW}

is a subspace of V. This subspace is called the null space of T. Similarly,
the linearity of T" implies that the range of T is a subspace of W. Recall
that

ranT:{wEW:EIUGV w:Tv}.

Proposition 1.10. A linear operator T : V — W is an injection if and only
Zf nul7l = {Ov}.

Proof. We first prove the “if” part of the proposition. Assume that nulT =
{0y }. Let u,v € V be arbitrary and assume that Tu = Tw. Since T is linear,
Tu = Tv implies T'(u—v) = Oyy. Consequently u—v € nulT = {0y }. Hence,
u — v = 0y, that is u = v. This proves that T is an injection.

To prove the “only if” part assume that T : V — W is an injection.
Let v € nulT be arbitrary. Then Twv = 0yy = T0y. Since T is injective,
Tv = T0y implies v = 0y. Thus we have proved that nul7 C {0y}. Since
the converse inclusion is trivial, we have nulT = {0y }. O

Theorem 1.11 (Nullity-Rank Theorem). Let V and W be vector spaces
over a scalar field F and let T : V — W be a linear operator. If V is finite
dimensional, then nulT and ranT are finite dimensional and

dim(nulT") + dim(ran7) = dim V. (1.8)
Proof. Assume that V is finite dimensional. We proved earlier that for an
arbitrary subspace U of V there exists a subspace X of V such that

Upx =Y and dimU + dim X = dim V.
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Thus, there exists a subspace X of V such that
(mlT)e X =V and dim(nul7T) + dim X = dim V. (1.9)

Since dim(nul7’) + dim X = dim V), to prove the theorem we only need to
prove that dimX = dim(ranT). To this end, we consider the restriction
T|x: X —ranT of T to the subspace X. This operator is defined by

Tlx(v)=Tv YvelX.

We will prove that T'|x is an isomorphism. The first step in this direction
is to prove that T'|y is a surjection. That is

span{Tz1,...,Txp} =ranT. (1.10)
Clearly {Txl, . ,Txm} C ranT. Consequently, since ranT' is a subspace of
W, we have span{Txl, . ,T:Em} CranT. To prove the converse inclusion,

let w € ranT be arbitrary. Then, there exists v € V such that Tv = w.
Since V = (nulT") + &, there exist v € nulT and x € X such that v = u+x.
Then Tv =T(u+2z) =Tu+Tx =Tx. Asx € X, there exist &1,...,&, € F
such that z = Z;n:l §jz;. Now we use linearity of T to deduce

m
w=Tv=Tx = ZEijj.

j=1
This proves that w € Span{Tznl, . ,Tmm}. Since w was arbitrary in ran T
this completes a proof of (1.10).
Next we prove that the vectors Tx1,...,Tx,, are linearly independent.
Let a1,...,an, € F be arbitrary and assume that
oa1Txy+ -+ T xm = O (1.11)
Since T is linear (1.11) implies that
a1r1 + -+ Ty € nulT. (1.12)
Recall that z1,...,z,, € cX and X is a subspace of V, so
oa1ry + 0+ oy, € X (1.13)
Now (1.12), (1.13) and the fact that (nul7) N X = {0y} imply
a1x1 + -+ oy = Op. (1.14)
Since x1,...,Z,, are linearly independent (1.14) yields a1 = --- = a,, = 0.
This completes a proof of the linear independence of Tx1,...,Txy,.
Thus {Txl, . ,Ta;m} is a basis for ran T'. Consequently dim(ranT") = m.
Since m = dim &, (1.9) implies (1.8). This completes the proof. O

A direct proof of the Nullity-Rank Theorem is as follows:

Proof. Since nulT' is a subspace of V it is finite dimensional. Set k =
dim(nulT) and let C = {ul, . ,uk} be a basis for nul 7.

Since V is finite dimensional there exists a finite set / C V such that
span(F) = V. Then the set T'F is a finite subset of W and ranT =

eq-stl-rnt

eqg-span-rnt

eq-li-rnt

eq-li2-rnt

eq-1li3-rnt

eq-lid4-rnt
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span(T]:). Thus ranT is finite dimensional. Let dim(ran T) = m and
let £ = {wl, . ,wm} be a basis of ranT.

Since clearly for every j € {1,...,m}, w; € ranT, we have that for
every j € {1,...,m} there exists v; € V such that T'v; = wj. Set D =
{Ul, ce ,’Um}.

Further set B=CUD.

We will prove the following three facts:

(I) CND =0,
(IT) spanB =V,
(III) B is a linearly independent set.

To prove (I), notice that the vectors in £ are nonzero, since £ is linearly
independent. Therefore, for every v € D we have that Tv # 0yy. Since for
every u € C we have Tu = 0yy we conclude that v € C implies u € D. This
proves (I).

To prove (II), first notice that by the definition of B C V. Since V is a
vector space, we have span B C V.

To prove the converse inclusion, let v € V be arbitrary. Then Tv € ranT.
Since &€ spans ranT', there exist B1,...,Bm € F such that

m
Tv = Zﬂjwj.
j=1
Set

m
v = Z Bjv;.
i=1

Then, by linearity of T" we have

m m
T’Ul = Z 5jT’Uj = Z,@j’w]’ =Twv.
j=1

j=1

The last equality yields and the linearity of T yield T'(v —v') = 0yy. Conse-
quently, v — v’ € nulT'. Since C spans nul T, there exist aq,...,a; € F such
that

k
v — ’U, = Z Uy .
Jj=1
Consequently,
k k m
v=2v + Zaiui = Zaiui + Zﬁjvj.
j=1 j=1 j=1

This proves that for arbitrary v € ¥V we have v € spanB. Thus V C span B
and (II) is proved.
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To prove (III) let aq,...,ax € F and fB1,...,0n € F be arbitrary and
assume that

k m
Z ;U + Z ﬁj’[)j = Oy. (1.15)
=1 =1

Applying T to both sides of the last equality, and using the fact that u; €
nul7" and the definition of v; we get

m
Z 5jwj = Ow.
j=1

Since £ is a linearly independent set the last equality implies that 5; = 0
for all j € {1,...,m}. Now substitute these equalities in (1.15) to get

k
Z Q;U; = Ov.
j=1

Since C is a linearly independent set the last equality implies that o; = 0
for all ¢ € {1,...,k}. This proves the linear independence of 5.

It follows from (II) and (III) that B is a basis for V. By (I) we have that
|B| = |C| + |D| = k + m. This completes proof of the theorem. O

The nonnegative integer dim(nul7’) is called the nullity of T'; the nonneg-
ative integer dim(ranT) is called the rank of T

The nullity-rank theorem in English reads: If a linear operator is defined
on a finite dimensional vector space, then its nullity and its rank are finite
and they add up to the dimension of the domain.

Proposition 1.12. Let ¥V and W be vector spaces over F. Assume that V
is finite dimensional. The following statements are equivalent

(a) There ezists a surjection T' € L(V, W).
(b) W is finite dimensional and dimV > dimW.

Proposition 1.13. Let V and W be vector spaces over F. Assume that V
is finite dimensional. The following statements are equivalent

(a) There ezists an injection T € L(V,WV).
(b) Either W is infinite dimensional or dimV < dim W.

Proposition 1.14. Let V and W be vector spaces over F. Assume that V
is finite dimensional. The following statements are equivalent

(a) There exists an isomorphism T : V — W.
(b) W is finite dimensional and dim)WV = dim V.

1.4. Isomorphism between L(V,W) and F"*™. Let V and W be fi-
nite dimensional vector spaces over F, m = dimV, n = dimW, let B =
{v1,...,v,} be a basis for V and let C = {wy,...,w,} be a basis for W.
The mapping Cp provides an isomorphism between V and F™ and C¢ pro-
vides an isomorphism between W and F".

‘eq—assu—4—l—i
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Recall that the simplest way to define a linear operator from F™ to F"
is to use an n X m matrix B. It is convenient to consider an n X m matrix
to be an m-tuple of its columns, which are vectors in F”. For example, let
bi,..., b, € F" be columns of an n X m matrix B. Then we write

B=[b - byl
This notation is convenient since it allows us to write a multiplication of a
vector x € F”" by a matrix B as

&1

Bx = Zgjbj where X = (1.16)
j=1

&n

Notice the similarity of the definition in (1.16) to the definition (1.6) of
the operator ng in Example 1.8. Taking B to be the standard basis of F™
and taking C to me the m-tuple given by B, we have Lg (x) = Bx.

Let T : V — W be a linear operator. Our next goal is to connect 7" in a
natural way to a certain n X m matrix B. That “natural way” is suggested
by following diagram:

y—T1T s w

CB CC

We seek an n x m matrix B such that the action of T" between V and W is
in some sense replicated by the action of B between F"" and F". Precisely,
we seek B such that

Ce(Tv) = B(Cp(v)) Yoe. (1.17)

In English: multiplying the vector of coordinates of v by B we get exactly
the coordinates of T'v.
Using the basis vectors vy, ...,v, € B in (1.17) we see that the matrix

B = [C¢(Tv1) -+ Ce(Tvm)] (1.18)

has the desired property (1.17).

For an arbitrary T' € £L(V,V) the formula (1.18) associates the matrix
B € F™™ with T. In other words (1.18) defines a function from L(V, W)
to Fxm.

Theorem 1.15. Let V and W be finite dimensional vector spaces over F,
m = dimV, n = dimW, let B = {v1,...,vn} be a basis for V and let
C ={w,...,w,} be a basis for W. The function

ME - LV, W) — F™™
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defined by
ME(T) = [Ce(Tw) -+ Ce(Tvm)], T c L(V,W) (1.19)
s an isomorphism.

Proof. 1t is easy to verify that Még is a linear operator.
Since the definition of M (T) coincides with (1.18), equality (1.17) yields

Ce(Tw) = (ME(T))Cs(v). (1.20)

The most direct way to prove that Még is an isomorphism is to construct
its inverse. The inverse is suggested by the diagram (1.21).

Cs (Ce)~1 (1.21)

Define
NE :F™™m 5 L(V, W)
by
(NE(B))(v) = (Co) ™ (B(Ca(v)),  BeF™™.  (122)

Next we prove that
NC e} MC = IE(V W) and MC e} NC = [anm
First for arbitrary 7' € £(V, W) and arbitrary v € V we calculate

)
((Nc ° Mc)(T))( ) = (Ceo)  ((ME(T))(C(v)) by (1.22)
= (Ce)™ ' (Ce(Tv)) by (1.20)
=Tv.
Thus (NF o ME)(T) = T and thus, since T' € L(V, W) was arbitrary, N§ o

ME=1
c LY,W):
Let now B € F"*™ be arbitrary and calculate

(ME o NE)(B) = ME (NG (B))
= |Ce((NEB))(v1)) -+ Ce((NEB))(wm)| by (1.19)

= [B(Cs(v)) -+ B(Cavn)] by (1.22)

= B{Cg(vl) CB(vm)} matrix mult.
=BI, def. of Cp
= B.

Thus (MgoNég) (B) = B for all B € F"*™ proving that MégoNég = Ipnxm.
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This completes the proof that M(f? is a bijection. Since it is linear, Még is
an isomorphism. O

Theorem 1.16. Let U, V and W be finite dimensional vector spaces over
F, k = dimU, m = dimV, n = dimW, let A be a basis for U, let B be a
basis for V, and let C be a basis for W. Let S € L(U,V) and T € L(V, V).
Let Mg\(S) € F™k MB(T) € F™™ and Mg (T'S) € F** be as defined in
Theorem 1.15. Then

ME(TS) = ME(T) Mg (S).
Proof. Let A= {u,...,uz} and calculate
MATS) = [Ce(TSu) -+ Ce(TSuy)] by (1.19)
[M (T)(Ca(Sur)) - ME(T)(Ca(Swy))| by (120)
= ME(T) [CB (Suy) --- (Suk)] matrix mult.
— ME(T)MA(S). by (1.19)

The following diagram illustrates the content of Theorem 1.16.

CBJ

MAMTS)=ME(T)MZ(S)

Ce

FTL

2. PROBLEMS

Problem 2.1. Let V and W be vector spaces over a scalar field F. Let S
be a subspace of the direct product vector space VxW, let G be a subspace
of V and let H be a subspace of W. Then

={w €W : Jv € G such that (v,w) € S}
is a subspace of W and
S_l(H):{UGV : Jw € H such that (v,w) € S}

is a subspace of V.
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Problem 2.2. Let V and W be finite-dimensional vector spaces over a scalar
field F. Let S be a subspace of the direct product vector space ¥V xW. The
following four sets are subspaces

domS = {v €V : 3w € W such that (v,w) € S},
ranS = {w € W : Jv € V such that (v,w) € S},
nlS={vevV: (v,0w) €S},
mulS ={wew: (0y,w) e S}
and the following equality holds:
dimdom § + dimmul § = dimran S + dimnul .

Hint: The following equivalence holds. For all v € V and all w € W we
have:

(v,w)eS & (v+z,w+y)eS VrenulS and Vy € mulS.

Problem 2.3. Let V and W be finite-dimensional vector spaces over a
scalar field F and recall that VxW and WxV are the direct product vector
spaces. Prove that the function

R:VxW — WxV
defined by
R(v,w) = (w,v) forall (v,w)eVxW

is an isomorphism.

Problem 2.4. Let V and W be finite-dimensional vector spaces over a scalar
field F and recall that VxW and WxV are the direct product vector spaces.
Let T be a subset of VxW. Then T is an isomorphism between V and W
if and only if the set

{(w,v) e WXV : (v,w) € T} =RT

is an isomorphism between W and V. (Use Problem 2.3 and Propositions 1.3
and 1.4 to prove this equivalence.)



