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DEFINITIZABLE EXTENSIONS OF POSITIVE 

SYMMETRIC OPERATORS IN A KREIN SPACE 

r 

Branko Curgus 

The Friedrichs extension and the Krein extension of a 
positive operator in a Krein space are characterized in terms of 
their spectral functions in a Krein space. 

INTRODUCTION 

In the fundamental paper [Kr], M. G. Krein developed 

the theory of selfadjoint extensions of semibounded symmetric 

(densely defined) operators in a Hilbert space. In particular he 

constructed all positive selfadjoint extensions of a given posi- 

tive symmetric operator and he proved among other things that if 

the set of all positive selfadjoint operators is equipped with a 

natural partial ordering (as defined in [Ka, VI-w then a 

greatest and a smallest positive selfadjoint extension exist. In 

[Kr] the greatest extension is called "hard" and it was shown to 

coincide with the Friedrichs extension. The smallest extension, 

that is, the "soft" extension in the terminology of Krein, we 

call the Krein extension (see [AS]). This theory was completed 

by Birman [Bi] and Vishik IV], and was also discussed in [AN], 

IF], [AS], [S]. A similar problem for positive symmetric sub- 

spaces (multivalued operators) was studied in [CS]. 

In this note we consider definitizable extensions of a 

given semibounded symmetric operator in a Krein space. Positive 

definitizable extensions of a positive operator in a Krein space 

were first studied in [LI] in order to describe all the general- 
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ized resolvents of a positive operator with equal and finite de- 

fect numbers. In Section 2, a characterization of the Friedrichs 

and the Krein extensions in a Krein space is formulated in terms 

of their spectral functions. These results are analogous to the 

results of Krein which we quote in the first section of this 

note. The characterization of the form domain of a definitizable 

operator, stated in Section 3, can be used in order to prove 

uniform convergence of eigenfunction expansions associated with 

ordinary differential operators having an indefinite weight 

function. These results will be published elsewhere. An equiva- 

lent description of the form domain of a positive definitizable 

operator appears in [JL, Proposition 3.1]. 

The author is indebted to Professor Heinz Langer for 

helpful suggestions and continual interest in this work. 

i. PRELIMINARIES 

Let (H, (.,.)) be a Hilbert space with the norm llfll 

= (f,f)i/2 (f 6 H) All operators which we consider in this 

note are supposed to be linear and densely defined. We denote by 

D(S) the domain of S , by R(S) the range of S , i.e., R(S) 

= S(D(S)) , and by S* the adjoint of S in (H,(.,.)) An 

operator S is called symmetric (selfadjoint) in (H,(.,.)) if 

S c S* (S = S* , resp.). A closed symmetric operator S is 

said to be bounded from below in (H, (.,.)) if 

(Sf,f) >_ o~(f,f) (f 6 D(S)) 

for some e ~ ~ . The operator S is called positive (strictly 

positive) if ~ ~ 0 (~ > 0 , resp.). 

Throughout this section we suppose that the operator S 

is bounded from below in (H,(.,.)) 

Let D[S] be the domain of the closed symmetric form 

constructed from the operator S in (H,(.,.)) Recall that 

D[S] consists of all f ~ H for which there exists a sequence 

(~n) c D(S) such that ~n ~ f in H and 
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(S(~n - @m),@n - @m) ~ 0 (n,m ~ +~) 

(see [Ka, VI-w For a selfadjoint operator S in the 

Hilbert space (H,(.,.)) by D[S] c H we denote the completion 

of D(S) with respect to the norm [I(ISI + I)i/2. u For a 

bounded from below selfadjoint operator S these two definitions 

of DIS] coincide (see [C]). We have DIS] : D(ISI I/2) 

By S F we denote the Friedrichs extension of S in 

(H,(.,.)) (see [Ka], [W]). From the definition of S F it fol- 

lows that D[SF] = DIS] Put N a = ker(S* - aI) for a 6 ~ . 

The next theorem follows from [Kr]. 

THEOREM i.i. Let S 1 be a selfadjoint extension of 

S and let F denote the spectral function of S 1 Then the 

following statements are equivalent: 

(i) S 1 = S F . 

(ii) D(SI) = D(S*)nD[S] 

(iii) D[SI] = D[S] 

(iv) For some (and hence for all) we have 

NanD[SI] = (0} 

a e @(SI) 

(S(~n - ~m),#n - @m) ~ 0 (n,m ~ +~) 

inn 

LEMMA 1.2. If S is a positive selfadjoint operator 

(H, (., .)) then R[S] = R(SI/2) 

PROOF. Let L be the closure of R(S) in H . Then 

(v) For some (and hence for all) a 6 ~(SI) and for 

all ~ 6 N a we have 

~t d(Ft~,~ ) . +~ 

In order to state an analogous theorem for the Krein 

extension S K of a positive operator S in (H,(.,.)) we de- 

fine the closure R[S] , of the range of S with respect to the 

symmetric form constructed from S in (H,(.,.)) , to be the set 

of all f e H for which there exists a sequence (~n) c D(S) 

such that S~ n ~ f in H and 
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the restriction SIL is a positive selfadjoint operator in the 

Hilbert space (L,(.,.)) and zero is not an eigenvalue of SIL . 

The operator (SIL) -I is defined on R(S) and D[(SIL) -I] 

consists of all f 6 L for which there exists a sequence 

(Un) c R(S) such that ~n ~ f in L (i.e. in H ) and 

((SIL)-I(~n - ~m),Un - ~m) ~ 0 (n,m ~ +~) 

Let Nn = S@n , n = 1,2,..., with some ~n 6 LnD(S) Then 

S~n ~ f in H and (~n - ~m,S(~n - ~m)) ~ 0 (n,m ~ +~) Hence 

D[(SIL) -I] = R[S] Since D[(SIL) -I] = D((SIL) -I/2) = R(S I/2) , 

the lemma is proved. 

The following theorem collects some results from [Kr] 

and [AN]. 

THEOREM 1.3. Let S be a positive operator in 

(H,(.,.)) and let S 1 be a positive selfadjoint extension of 

S . Denote b Z F the spectral function of S 1 The following 

statements are equivalent: 

(i) S 1 = S K (il) D(SI) = {f 6 H : S*f 6 R[S]} 

(ii) R(SI) = R(S*)AR[S] 

(iii) R[SI] = R[S] 

(iv) For some (and hence for all) we have 

NaNR[SI] = (0} 

a 6 ~ (SI) 

(v) For some (and hence for all) a 6 ~(SI) and for 

all ~ E N a we have 

i/t d(Ft@,@ ) = +~ . 

R 

PROOF. The equivalence (i)<=>(il) is Corollary 2 in 

[AN]. The implication (il) =>(ii) is obvious. If we suppose 

(ii), then we have ker(Sl) = R(SI) (• = (R(S*)NR[S]) (1) = N O , 

where (I) denotes the orthagonal complement in the Hilbert 

space. Now (il) follows easily. From the definition of the set 

R[SI] it follows that (ii) implies (iii). If we assume (iii), 

then R(SI)AR(S* ) c R[S] = R(SK) Let f 6 D(SI) and let 

g 6 D(SK) be such that Slf = SKg . Then f - g 6 N o c D(SK) 
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It follows that f ~ D(SK) Hence D(SI) c D(SK) , and conse- 

quently S 1 = S K . Thus (iii) =>(i). The equivalence (iv)<=>(v) 

is obvious and (i)<=>(v) is proved in Theorem 8 in [Kr] (see also 

Theorem 4.1 in [S]) for a = -i . 

In order to prove that (iv) is equivalent to N_InR[SI] 

= {0) , we observe that we can suppose a ~ 0 in (iv). Other- 

wise, if a = 0 , (iv) implies N o = {0) , and therefore S is 

essentially selfadjoint. Our theorem is trivial in this case. 

Further, observe that (iv) implies N o c D(SI) Indeed, 

No c D(S*) = D(SI) + N a and, hence, for f 6 N o we have 

f = g + h , with g 6 D(SI) , h s N a . It follows that 0 = S*f 

= Slg + ah , i.e., Slg = -ah s NanR(Sl) = {0) Since a ~ 0 , 

we have h = 0 . Thus f = g e D(SI) , i.e., N O ~ D~SI) Sup- 

pose that (iv) holds and let f c N_InR[Sl] Then f e R(S*) 

= R(SI) + I~ a , i.e., f = u + v , with u 6 R(SI) , v s N a . It 

follows that v = f - u 6 R[SI]nN a = {0} Hence f = u s R(SI) 

Let f = SlW , with w ~ D(SI) Then S*f = -f = -SlW implies 

f + w s NoND(SI) Thus f s D(SI) Since Slf = S*f = -f and 

-i 6 ~(SI) , it follows that f = 0 . The converse implication 

can be proved in the same manner. 

2. THE FRIEDRICHS AND THE KREIN EXTENSIONS IN A KREIN SPACE 

Let (K,[.,.]) be a Krein space (see [Bo], [AI]), J 

a fundamental symmetry on K , (f,g) = [Jf,g] (f,g 6 E) and II.I] 

the corresponding norm on the Hilbert space (K,(.,.)) All 

topological notions in the Krein space K are understood with 

respect to the topology generated by l[.II This topology is 

independent of the choice of the fundamental symmetry J . For 

this and other facts about Krein spaces see [Bo] or [AI]. By A + 

we denote the adjoint of an operator A in the Krein space 

(K,[.,.~) If B = JA and S = AJ , then A + = JB* = S*J , 

where * denotes operator adjoints in the Hilbert space 

((K, (.,.)) An operator A is said to be symmetric (selfad- 

joint) in the Krein space (K,[.,.]) if A c A + (A = A + , 

resp.). A closed symmetric operator A is said to be bounded 
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from below in a Krein space (K,[.,.]) if 

[Af,f] >_ (xllfIl 2 (f 6 D(A)) 

for some ~ 6 ~ . The operator A is called positive (strictly 

positive) if ~ ~ 0 (~ > 0 , resp.). Obviously, an operator A 

has one of the above defined properties in the Krein space if and 

only if the operators B = JA and S = AJ have the correspond- 

ing property in the Hilbert space (K,(.,.)) We use the common 

definition of definitizable operators in a Krein space, see [L2]. 

A definitizable operator A in a Krein space has a spectral 

function, possibly with critical points on the real axis (see 

[J], [L2], [AI]). The set of all critical points of the spectral 

function, which are also called the critical points of the 

definitizable operator A , will be denoted by c(A) 

Throughout this note we suppose that the operator A 

is bounded from below in the Krein space K . Hence the operator 

JA = B is bounded from below in the Hilbert space (K,(.,.)) 

For such A we consider the set D[JA] defined in the Hilbert 

space (K, (.,.)) The set D[JA] is the domain of the closure 

of the sesquilinear form [A.,.] and it does not depend on the 

choice of the fundamental symmetry J (see [C]). 

Let B F be the Friedrichs extension of B = JA in the 

Hilbert space (K,(.,.)) The operator A F := JB F is said to 

be the Friedrichs extension of A in the Krein space K . 

By M a we denote the kernel of A + - aI , a ~ 

The following theorem is analogous to Theorem i.i. 

THEOREM 2.1. Let A 1 be a definitizable extension of 

A i_nn (K,[.,.]) and let E denote the spectral function of 

A i . Then the fo!lowinq statements are equivalent: 

(i) A 1 = A F . 

(ii) D(AI) = D(A+)nD[JA] 

(iii) D[JAI] = D[JA] 

(iv) For some (and hence for all) a 6 ~(AI) we have 

ManD[JAI] = {0} 

(V) For some (and hence for all) a c ~(AI) and for 
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all ~ 6 M a we have 

I[t d[Et~,~]I = +~ i 

Here ~ is an arbitrary closed neighborhood of ~ in ~ , 

such that D~nC(Al) c {~} and ~ = RU {~) is regarded as the 

one point compactification of E . 

PROOF. The equivalences (i)<=>(ii)<=>(iii) follow from 

Theorem i.i. The equivalence (iv)<=>(v) follows from results of 

Section 3. We prove (i)<=>(iv) now. Let a 6 ~(AF) and 

f 6 ManD[JAF]. Since M a c D(A +) and D[JA] = D[JAF] , (ii) 

implies f 6 D(AF) It follows that f = 0 . This proves (iv). 

Suppose that (iv) holds and let f 6 D(AF) c D(A +) Since 

a e ~(AI) we have D(A +) = D(AI) + M a . Hence, there is a 

g 6 D(AI) such that f - g E M a As D[JAF] c D[JAI] , we have 

f - g 6 ManD[JAI] = (0} Consequently, f = g s D(AI) This 

proves D(AF) c D(AI) Therefore A 1 = A F , i.e., (iv) =>(i). 

REMARK 2.2. It is easy to see that the definition of 

the Friedrichs extension of A in the Krein space K does not 

depend on the choice of the fundamental symmetry J . It is also 

true that A F = SFJ , where S = AJ and S F is the Friedrichs 

extension of S in the Hilbert space (K,(.,.)) Indeed, JSFJ 

is a selfadjoint extension of JSJ = JA in (K,(.,.)) and 

D[JSFJ ] = JD[SF] = JD[S] = D[JSJ] = D[JA] 

Let A be a positive operator in the Krein space 

(K,[.,.]) Then the operator S = AJ is a positive operator 

in the Hilbert space (K,(.,.)) Denote by S K the Krein 

extension of S in (K,(.,.)) The operator A K := SKJ is a 

positive selfadjoint extension of A in (K,[.,.]) and we call 

it the Krein extension of A in the Krein space K . 

In what follows we consider the set R[AJ] defined in 

the Hilbert space (K, (.,.)) The set R[AJ] consists of all 

f 6 K for which there exists a sequence (~n) c D(A) such that 

A~ n ~ f in K and 

[A(~n - ~m),~n - ~m] ~ 0 (n,m ~ +~) 
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Hence R[AJ] is independent of the choice of J . 

REMARK 2.3. For the positive operator A in the Krein 

space (K,[.,.]), the vector space R(A) with the inner product 

<Af,Ag> := [Af,g] (f,g 6 D(A)) 

is a pre-Hilbert space. This space is contained continuously in 

K if and only if the operator A is bounded. In order to see 

this, let L denote the closure of R(A) in K and consider 

the selfadjoint positive operator P := AJIL in the Hilbert 

space (L,(.,.)) The operator A is bounded in K if and 

only if P is bounded in L . We have ker(P) = {0} and 

<f,g> = <AJx,AJy> := [AJx,Jy] = (AJx,y) = (f,p-ig) 

for f,g s R(A) = R(P) and x,y s L such that f = Px , g = Py. 

The space (R(A),<.,.>) is contained continuously in (K, (.,.)) 

if and only if <f,f> ~ ~(f,f) (f s R(A)) for some a > 0 , 

i.e., if and only if 

(f,p-lf) > ~(f,f) (f 6 R(A)) 

The last inequality holds if and only if P is bounded. In this 

case the unique completion of (R(A),<.,.>) is the Hilbert space 

(R[AJ],<.,.>) It is easy to see that A coincides with the 

adjoint of the inclusion of (R[AJ],<.,.>) in (K,[.,.]) This 

is an alternative proof of Theorem 1 in [dB] and the approach 

given here might be extended to other cases considered in [dB]. 

THEOREM 2.4. Let A be a positive operator and let 

A 1 be a positive definitizable extension of A in the Krein 

space (K,[.,.]) Denote b l[ E the spectral function of A 1 

The followinq statements are equivalent: 

(i) A 1 = A K . (il) D(AI) = {f 6 K : A+f 6 R[AJ]} 

(ii) R(AI) = R(A+)DR[AJ] 

(iii) R[AIJ ] = R[AJ] 

(iv) For some (and hence for all) a s ~(AI) we have 

MaAR[AIJ ] = {0} 
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Suppose that ker(Al) i__ss orthoqonally complemented in 

(K,[.,.]) Then the previous statements are equivalent to: 

(v) For some (and hence for all) a s ~(AI) and for 

each ~ s M a there exists g e {~}U ker(Al) such that 

i/t d[Et~,g ] +~ . 

PROOF. The equivalences (i)<=>(il)<=>(ii)<=>(iii) 

follow from Theorem 1.3. The equivalence (iv)<=>(v) follows from 

results of Section 3. We prove (i)<=>(iv) now. Let a 6 ~(AK) 

and f s MaDR[AKJ ] Since M a c R(A +) and R[AJ] = R[AKJ ] , 

(ii) implies f 6 R(AK) Let f = AKg , 

A+f = aAKg , i.e., f - ag 6 M o c D(AK ) 

consequently f = 0 This proves (iv). 

and let f 6 N_IDR[SI] , where S 1 = AIJ 

Theorem 1.3, (iv) implies that M ~ c D(AI ) 

g s D(AK) Then 

Hence f 6 D(AK) and, 

Suppose that (iv) holds 

As in the proof of 

We have f s R(S*) 

= R(A +) and R(A +) = R(AI) + M a Hence f = g + h , with 

g 6 R(AI) , h 6 M a . It follows that f - g s MaAR[AIJ ] = (0} 

Consequently, f = g s R(AI) = R(SI) Let f = SlU , with 

u 6 D(SI) Then S*f = -SlU , i.e., f + u 6 N o c D(SI) Thus 

f 6 D(SI) and Slf = -f Therefore f = 0 , i.e., N_IAR[SI] 

= {0} Theorem 1.3 yields S 1 = S K , and (iv) => (i) is proved. 

REMARK 2.5. It follows from Theorem 2.3 that the defi- 

nition of the Krein extension of A in the Krein space K does 

not depend on the special choice of the fundamental symmetry J . 

It is also true that A K = JB K , where B = JA and B K is the 

Krein extension of B in the Hilbert space (K,(.,.)) Indeed, 

JBKJ is a selfadjoint extension of JBJ = AJ in (K, (.,.)) and 

R[JBKJ ] = JR[BK] = JR[B] = JR[JA] = R[AJ] 

REMARK 2.6. Suppose that for the operator A the form 

[Af,g] (f,g 6 D(A)) has a finite number of negative squares, 

R(A - zI) is closed for at least one z s ~ and that A has a 

finite defect m o (that is, there exists a selfadjoint extension 

A 1 of A in (K,[.,.]) such that dim D(AI)/D(A ) = m o < +~ ) 

Then all selfadjoint extensions of A in (K,[.,.]) are defini- 

tizable. Particularly, if A is a strictly positive operator in 

(K,[.,.]) with a finite defect then all its selfadjoint exten- 
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sions are definitizable. Moreover, each one of these selfadjoint 

extensions has an orthogonally complemented kernel (see [CL, 

Section 1.2]). 

3. A CHARACTERIZATION OF D[JA] FOR A DEFINITIZABLE A 

For a selfadjoint operator S in the Hilbert space 

(H,(.,.)) we have D[S] = D(ISI I/2) Let F denote the spec- 

tral function of S . Then the set D[S] consists of all f 6 H 

such that [ Itld(Ftf,f ) < +~ . In Remark 3.3 and Theorem 3.4 
R 

of this section we give some analogous properties of the set 

D[JA] with respect to the spectral function of a definitizable 

operator A . 

Let A be a definitizable operator in a Krein space 

(K,[.,.]) and let E denote the spectral function of A . Let 

~ be a closed neighborhood of ~ in R such that ~nc(A) 

c {~} Denote by L~ the set of all f ~ K such that 

I[ t d[Etf,f] I < +~ e 

It follows from the properties of the spectral function E that 

the set L~ is independent of the choice of the neighborhood 

~ . 

PROPOSITION 3.1. Let A be a boundedly invertible 

positive operator in the Krein space (K,[.,.]) Then f e D[JA] 

if and only i ff ~R t d[Etf,f ] < +~ , i.e., D[JA] = L~ 

PROOF. We first prove that | t d[Etf,f ] < +~ for 
J 

all f s D[JA] Since JA is a positive operator in the Hil- 

bert space (K,(.,.)) , we have that 

there exists a sequence (~n) c D(A) 

[A(~n - ~m)'~n - ~m] ~ 0 

Let 

f s D[JA] if and only if 

such that ~n ~ f and 

(n,m ~ +~) (3.1) 

~ = (-~,~) for ~ 6 ~+ Then we have 

[A(@n - @m),@n - ~m] ~ [AE(n~) (~n - ~m),~n - @m] 
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The relation (3.1) implies that for each E > 0 

natural number N(a) such that 

[AE(n~) (@n - @m),@n - @m] < e (n,m > N(E),~ ~ ~+) 

As the operator AE(~) (~ ~ ~+) is bounded, letting 

get 

[AE(n~) (@n - f),@n - f] < s (n _> N(s , ~ 6 ~+) 

With f<~> := E(~#)f , ~ e N+ , we have 

[AE(n~) (@n - f<~>),@n - f<~>] -< ~ (n _> N(s ~ 6 ~+) (3.2) 

It is obvious that R(A) = K and ker(A) = {0} . Therefore 

Theorem 6.1 (ii) in [L2] implies that g = ~ dEtg for all 

g 6 D(A) Therefore lim E(~)g = 0 for all g c D(A) 

Here n~ = ~\n~ . Hence 

[Ag,E(n~)g] ~ 0 (# ~ +~ , g 6 D(A)) 

Since (@n) c D(A) , for a fixed natural number 

n o _> N(s , there exists ~o = ~o(no ,s = ~o (E) such that 

[A@no,E(n~)@no] < s (# _> ~o(E)) 

Together with (3.2) this implies 

[A(@no- f<#>),@no- f<~>] = [AE(n~)(@no- f<~>),@n o- f<#>] 

+ [AE(n~) (@no- f<~>),@no- f<~>] 

= [AE(n~)@no,@no ] + [AE(n~)(@no- f),@n o- f] 

_< s + s = 2E (~ _> ~O(s 

It follows from the last inequality that 

[A(f<~> _ f<T>),f<~> _ f<T>] < 8s (3.3) 

Since 

(~,r _> ~o(E)) 

there exists a 

m ~ +~ we 
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[A(f<~> _ f<[>),f<~> _ f<T>] = ~ t d[Etf,f ] 

for ~ > ~ > 0 , the inequality (3.3) yields [ t d[Etf, f] 

< +~ . Hence we have proved that D[JA] c L~ . 

Before we continue the proof of Proposition 3.1, we 

observe that if ~ dEtg converges in K , then ~ [RdEtg = g . 

Indeed, if we put h = ~ dEtg , then 

A-lh = ~ t-ldEth = ~ t-ldEt(~ dElg)= ~ t-ldEt g = A-ig . 

Hence g = h 

Now we prove that L~c D[JA] For f c L~ , n Z m , 

and with the notation introduced above, we have 

[A(f<n>-f<m>),f<n>-f <m>] = ~ t d[Etf,f ] ~ 0 (n,m ~ +~) .(3.4) 

~n\~m 

We note that (f<n>) c D(A) Since we suppose that 0 6 ~(A) , 

we have 

EAg,q] >-tIA-111-111gH 2 

This inequality and (3.4) imply that 

quence with respect to the norm II-II 

~RdEtf converges in K . The preceding observation yields 

= f i.e., f<n> ~ f (n ~ +~) dEtf I 

(g 6 D(A)) 

(f<n>) is a Cauchy se- 

in K . It follows that 

(3.5) 

The relations (3.4) and (3.5) imply that f 6 D[JA] The propo- 

sition is proved. 

REMARK 3.2. It follows from the last part of the proof 

of Proposition 3.1 that 

= f for all f e dEtf D[JA] 

R 
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This is an improvement of Theorem 6.1 (ii) in [L2] for the opera- 

tor A with 0 6 ~(A) 

REMARK 3.3. The vector space D[JA] with the inner 

product ((jA)I/2., (jA) I/2.) is a Hilbert space and this inner 

product coincides on D(A) with [A.,.] For f 6 D[JA] and 

the sequence (f<n>) c D(A) , defined as in the proof of Proposi- 

tion 3.1, the relations (3.4) and (3.5) imply that f<n> ~ f 

(n ~ +~) in the Hilbert space D[JA] Therefore, for every 

f,g 6 D[JA] we have 

= ~ ~ d[E f<n>,g <n>] t d[Etf,g ] lim t d[Etf,g ] = lim t t 
n~ n~ 

~n ~n 

= lim [Af<n>,g <n>] = lim ((jA) I/2f<n>, (jA) i/2g<n>) 
n~ n~ 

= ((JA) I/2f, (JA) I/2g) 

THEOREM 3.4. Let A be a definitizable operator. 

Then 

D[JA] = L~ . 

PROOF. Let H~ c ~ be a closed neighborhood of 

which does not contain zero and ~AC(A) c {~) Put K~ := 

E(H~)K . Let Jo be a fundamental symmetry on K which com- 

mutes with E(~) Then Joll~o is a fundamental symmetry on 

I~o . The restriction /~0 := AIK~ is a boundedly invertible 

operator. If the operator A has a definitizing polynomial of 

even degree, then (K~,I[.,.]I) is a Hilbert space and the 

equality D[JoA~] = L~ follows easily. 

If the operator A has a definitizing polynomial of 

odd degree, than A~ is a boundedly invertible positive or 

negative operator in the Krein space (K~,[.,.]) By K~ we 

denote the orthogonal complement of I~o in (K,[.,.]) The 
I . 

decomposition K = K~[+]l~o , reduces the operators Jo A , IJoAl 

and the restriction IJoAl IK~ is a bounded operator. Here 
I 

IJoAI denotes the absolute value of the selfadjoint operator 

Jo A in the Hilbert space (K,[Jo.,.]) The same decomposition 
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reduces the operator (IJoAl + I) I/2 and we conclude that 

D((IJoAI + I) 1/2) • " 1/2) =  [+]D(IJoAI 

It follows from [C, Remark 1.4] that 

JoAl + I)1/2) and D[JoA~] = D( IJoA~I1/2) D[JoA ] = D(( 

Hence 

D[JoA ] = K~[+]D[JoA~] (3.6 

Proposition 3.1 implies that D[JoA~] consists of all f ~ K 

for which IF t d[Etf,f]l < +~ It follows from this and (3.6) 

that D[JoA ] consists of all f ~ K for which | t d[Etf,f] 

< +~ . Since we have D[JoA ] : D[JA] , the theorem is proved. 

REMARK 3.5. Remark 3.2 and the equality (3.6) imply 

that for every f 6 D[JA] we have 

E(n~)f = ~ dEtf (3.7 

Note that if ~ is a regular critical point of the definitizable 

operator A the equality (3.7) holds for every f 6 K . 

If S is a positive selfadjoint operator in a Hilbert 

space (}{, (.,.)) , it follows from Lemma 1.2 that R[S] consists 

of all f e H for which ~ i/t d(Ftf,f ) < +~ . In the following 

proposition we show an analogous property of R[AJ] with respect 

to the spectral function E of the positive definitizable opera- 

tor A . 

operator i_nn (K,[.,.]) and suppose that ker(A) 

complemented i_~ K . Then we have R[AJ] = L o . 

PROOF. Let L be the closure of R(A) 

Denote by L o the set of all f s K such that 

< +~ for all ~ {f)U i/t d[Etf,g] g ker (A) 

R 

PROPOSITION 3.6. Let A be a positive definitizable 

is orthoqonally 

in K Then 
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K = ker(A) [$]L , (L,[.,.]) is a Krein space and AIL is a posi- 

tive definitizable operator in L such that ker(AIL ) = (0} 

Let Jo be a fundamental symmetry on L and let Q be the 

orthogonal projector onto L in K . Obviously QEIL is a 

spectral function of AIL and R[(AIL)Jo] = D[Jo(AIL)-I ] It 

follows from the properties of the spectral function of AIL 

(see [L2, II.3]) and Theorem 3.4 that R[(AIL)Jo] is the set of 

all f ~ L for which 

i/t d[Etf,f ] < +~ . (3.8) 

The last set coincides with L o Indeed, it is obvious that for 

every f c L and g 6 ker(A) we have ~ i/t d[Etf,g ] = 0 . 

Hence for f 6 L the relation (3.8) yields f e L o . Conversely, 

for f s L o and for all g 6 ker(A) we have 

~+ > I~ i/t dCEtf,q] l = I~ i/t d[Et(I - Q) f,g]l 

This implies that [(I - Q)f,g] = 0 for all g 6 ker(A) , i.e., 

f 6 L and (3.8) holds. 

Since R[AJ] = R[(AIL)Jo] , the proposition is proved. 

The following proposition is an improvement of Theorem 

6.1 (ii) in [L2] for the operator A with the orthogonally 

complemented kernel. 

PROPOSITION 3.7. 

Then we have 

Let A be as in Proposition 3.6. 

f J dEtf (f E D[JA]NR[AJ]) 

PROOF. It follows from Remark 3.2 and the properties 

of the spectral function E that for a bounded positive operator 

A in K such that ker(A) = {0) we have f = ~ dEtf for all 

f 6 R[AJ] It is obvious that the same equality holds true with 

an orthogonally complemented ker(A) For an unbounded A and 

f ~ R[AJ]ND[JA] put fo = E(~I) , f~ = f - fo , Ko = E(nl)K and 

K~ = E(~\~I)K . Let J be a fundamental symmetry on K which 
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commutes with E(nl) Then fo E R[ (AIKo) (JIKo) ] , 

f~ 6 D[ (JIK~) (AI K~) ] and the preceding remark yields 

fo--~ dEtf, f~ = ; dEtf 

n I ~\n 1 

The proposition follows from the last two equalities. 

~urgu~ 
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