
FLOOR, CEILING AND THE SPACE BETWEEN

ÁRPÁD BÉNYI AND BRANKO ĆURGUS

Abstract. Motivated by a question on the ranges of the commuta-
tors of dilated floor functions in [9], together with a related problem
in [3], we investigate the precise ranges of certain generalized polyno-
mials dependent on a real parameter. Our analysis requires non-trivial
tools, including Kronecker’s approximation theorem. The results high-
light sharp distinctions between irrational parameters and sub-unitary
and supra-unitary rational parameters. We also propose several conjec-
tures for the irrational and supra-unitary rational cases, supported by
extensive computations in Wolfram Mathematica.
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1. Introduction

Given a real number x, the floor and ceiling of x are defined respectively
by

bxc := max
{
m ∈ Z : m ≤ x

}
and dxe := min

{
n ∈ Z : n ≥ x

}
.

Equivalently, bxc and dxe are the unique integers satisfying

bxc ≤ x < bxc+ 1 and dxe − 1 < x ≤ dxe. (1.1)
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It is also clear from the definitions that dxe − bxc ∈ {0, 1}, and that dxe −
bxc = 0 if and only if x ∈ Z.

The definitions and names of the floor and ceiling functions were intro-
duced by Iverson in the context of computer science [7, p. 12]; see also [6,
Chapter 3] for additional history and properties. Despite their elementary
definitions, these functions arise in a wide range of applications. For in-
stance, they appear in the statement of the Quadratic Reciprocity Law, in
Legendre’s formula for the exponent of the highest power of a prime divid-
ing a given integer, and in expressions involving the Riemann zeta function,
among many others.

The investigation of digital straight lines, that is, drawing lines on a
computer screen, naturally leads to dilated floor functions and their com-
mutators. For α ∈ R \ {0}, define the following functions:

`α : R→ R, `α(x) = αx,

gα : R→ Z, gα(x) = bαxc.

From this perspective, gα discretizes `α at the length scale 1/α, in the sense
that the difference `α−gα is a bounded function. Understanding the interac-
tion of the discretizations at two different scales α and β is mathematically
equivalent to the study of the commutator of the functions gα and gβ defined
by

[gα, gβ] = gα ◦ gβ − gβ ◦ gα.
While the commutator [`α, `β] vanishes identically, the authors in [9] high-
light how “discretization generally destroys such commutativity,” underscor-
ing the new complexity introduced by the floor functions. Their main result
characterizes all pairs (α, β) for which the range of the commutator [gα, gβ]
is precisely {0}; see also [8]. Subsequent work in [10,11] extended this anal-
ysis by asking when the range of the commutator is contained in [0,∞),
drawing on tools such as Beatty sequences, Lie groups, and the Sylvester
duality theorem. With the exception of [9], however, none of these studies
addressed the problem of determining the precise range of commutators.

In light of this background, it is natural to consider the simplest case
where the dilation parameters coincide. Both gα2 and gα ◦ gα are step-
function approximations of `α2 . Thus, in place of the trivial commutator
[gα, gα] = 0, one may study the difference

gα2 − gα ◦ gα,

which defines a so-called generalized polynomial in the sense of [1].
Specifically, for α > 0, define the function fα : N→ Z by

fα(n) = gα2(n)− gα
(
gα(n)

)
=
⌊
α2 n

⌋
−
⌊
αbαnc

⌋
, ∀n ∈ N. (1.2)

An instance of this function already appeared in a problem posed for high
school students [3], which asked for the precise range of fτ , with τ =

(
1 +√

2017
)
/2.
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In this note, we shall investigate a generalization of the problem in [3]
and discover some nice connections with other number theoretical facts,
such as the concept of modulo (or simply, mod) operator [12] or Kronecker’s
approximation theorem [2, Chapter III]; see also [13] and [14]. We also
state several conjectures regarding the precise range of fα for general supra-
unitary rational parameters, and also for irrational parameters α. Some of
the questions that arise are naturally related to the size of the space between
appropriate floor and ceiling functions; see, for example, Remark 3.1 and
Remark 4.1.

1.1. Notation. Above, by Z we denote the set of integers and by N the set
of positive integers. By R we denote the set of real numbers and by Q the
set of rational numbers.

The fractional part of x is defined by

x := x− bxc,
so that 0 ≤ x < 1 for all x ∈ R. Here we opt, as in [1], for the notation
x for the fractional part of a real number, rather than the more common
{x}, since braces are consistently used for set notation; in particular, {x}
denotes a singleton set.

For a, b ∈ N ∪ {0} we set

Ja, bK :=
{
x ∈ N ∪ {0} : a ≤ x ≤ b

}
.

We use the following operations on sets: given two sets A,B ⊆ R, and
given a scalar c ∈ R, we let

A+B :=
{
a+ b : a ∈ A, b ∈ B

}
, and cA :=

{
ca : a ∈ A

}
.

We denote the set A+ (−1)B by A−B.

2. What is the largest possible range of fα?

We answer this question in the following proposition. As usual, we let

Range(fα) :=
{
fα(n) : n ∈ N

}
.

It is clear that for α ∈ N we have a trivial range, Range(fα) = {0}. Therefore,
for the remainder of our discussion we will assume that α > 0 and α 6∈ N.

Proposition 2.1. Let α be a positive non-integer. Then,

Range(fα) ⊆
q
0, dαe

y
.

Proof. Write αn = bαnc+ αn . Then

fα(n) =
⌊
α2n

⌋
−
⌊
α2n− α αn

⌋
≥
⌊
α αn

⌋
≥ 0,

where we used the simple fact that, for any real numbers x, y, bxc − byc ≥
bx− yc. Furthermore, by (1.1), we have

fα(n) =
⌊
αbαnc+ α αn

⌋
−
⌊
αbαnc

⌋
< αbαnc+ α αn − αbαnc+ 1
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= α αn + 1

< α+ 1.

But since fα(n) ∈ Z, we obtain that fα(n) ≤ bα+ 1c = dαe. �

It is useful to note that our proof actually proves the stronger inequality⌊
α αn

⌋
≤ fα(n) ≤

⌈
α αn

⌉
, ∀n ∈ N. (2.1)

In particular, (2.1) implies that for all n ∈ N we have

fα(n) =
⌊
α αn

⌋
or fα(n) =

⌈
α αn

⌉
. (2.2)

Corollary 2.2. If α ∈ (0, 1), then {0} ⊆ Range(fα) ⊆ {0, 1}.

Proof. Simply note that if α ∈ (0, 1), then fα(1) = 0 and dαe = 1. �

The previous corollary establishes that, for all sub-unitary parameters α,
we have that either Range(fα) = {0} or Range(fα) = {0, 1}; see Proposi-
tion 3.4 and Conjecture 4.5.

As we shall soon see, there is a significant difference between the mapping
properties of fα for sub-unitary rational parameters α and supra-unitary
ones. Naturally, one may ask if one can reduce one case to the other, but
the answer is not so simple.

The search for a better understanding of the range of fα leads in a natural
way to equivalent formulations of fα, besides the ones already expressed in
(1.2) or (2.2). When utilized carefully, these alternate formulations can
provide further insight in particular situations. While we do not necessarily
need these most general formulations, we will find it useful to revisit the
calculations in a subsequent section dealing with rational parameters α > 1.
We note also that our alternate formulations below can be obtained as a
particular version of [5, Theorem 1].

In general, writing

α = bαc+ α ,

a series of routine calculations yield

fα(n) = −bαc
⌊
α n

⌋
+
⌊
2bαc α n+ α 2n

⌋
−
⌊
bαc α n+ α

⌊
α n

⌋⌋
. (2.3)

If we further write α n = b α nc+ α n , then we can re-write (2.3) as

fα(n) =
⌊
2bαc α n + α 2n

⌋
−
⌊
bαc α n + α

⌊
α n

⌋⌋
.

3. Rational parameters α

Recall that if α ∈ N, then fα(n) = 0 for all n ∈ N. Thus, in what
follows we shall concentrate on positive rational parameters α which are
non-integers. The next lemma states that finding the range of fα only
requires the knowledge of a finite amount of values.
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Lemma 3.1. Let a ∈ N and b ∈ N\{1} be relatively prime, and set α = a/b.
Then

Range(fα) = {0} ∪ fα
(q

1, b2 − 1
y)
.

Proof. Given n ∈ N, by the division algorithm, there exist q, r ∈ Z such that

n = b2q + r, r ∈
q
0, b2 − 1

y
.

Now, if r = 0, it is easy to see that fα(b2q) = 0. If r 6= 0, then

fα(n) =

⌊
a2q +

ra2

b2

⌋
−
⌊
a

b

⌊
abq +

ar

b

⌋⌋
= a2q +

⌊
ra2

b2

⌋
− a2q −

⌊
a

b

⌊ar
b

⌋⌋
= fα(r). �

3.1. Sub-unitary rational parameters α. We will be assuming here that
α ∈ Q ∩ (0, 1). The function introduced in the following proposition is
reminiscent of the concept of mod operator [12].

Proposition 3.2. Let a, b ∈ N be relatively prime with a < b. Define the
function

φa,b : N→ N ∪ {0}
by

φa,b(n) = na−
⌊
n
a

b

⌋
b, n ∈ N.

Then, Range(φa,b) =
q
0, b− 1

y
.

Proof. Using (1.1), we have

na− b <
⌊
n
a

b

⌋
b ≤ na,

proving that φa,b(n) ∈
q
0, b−1

y
for all n ∈ N. We prove next that

q
0, b−1

y
⊆

Range(φa,b). Since a and b are relatively prime, there exist x, y ∈ N that
satisfy Bézout’s identity

ax− by = 1.

Let r ∈
q
1, b− 1

y
be arbitrary. Then

a

b
xr = yr +

r

b
.

Since 0 < r/b < 1 and y ∈ N we have⌊
xr
a

b

⌋
= yr

and

φa,b(xr) = xra− yrb = r(xa− yb) = r. �

The following simple lemma will be needed in our next result.
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Lemma 3.3. Let a, b ∈ N be relatively prime with a < b. The range of the
function

(x, y) 7→ ax+ by, x, y ∈
q
0, b− 1

y
, (3.1)

includes
q
0, b2 − 1

y
if and only if a = 1.

Proof. Let a, b ∈ N. Notice that the minimum of the function defined in
(3.1) is 0, its maximum is (a + b)(b − 1), so that its codomain is

q
0, (a +

b)(b − 1)
y
. Note also that the domain has b2 elements while the codomain

has 1 + (a+ b)(b− 1) elements, and b2 ≤ 1 + (a+ b)(b− 1). Since

ax1 + by1 = ax2 + by2 with x1, y1, x2, y2 ∈
q
0, b− 1

y
,

implies the equality of the pairs (x1, y1) = (x2, y2), the function in (3.1) is
an injection. If a = 1, then the function in (3.1) is a bijection as its domain
and its codomain have the same number of elements. Let a > 1. Then, by
a < b, we also get b > 1. Since the set

q
0, b2 − 1

y
and the range of the

function (3.1) have the same number of elements (namely, b2), and since the
maximum of the function is

(a+ b)(b− 1) = b− a+ (a− 2)b+ b2

which is strictly greater than b2 − 1, it is not possible that
q
0, b2 − 1

y
is a

subset of the range. In particular, then 1 is not in the range of the function
defined in (3.1). This proves the claim. �

Proposition 3.4. Let α ∈ Q ∩ (0, 1]. The following dichotomy holds:

(i) If α = 1/b with b ∈ N, then Range(fα) = {0}.
(ii) If α = a/b with a, b ∈ N relatively prime and 1 < a < b, then

Range(fα) = {0, 1}.

Proof. By Proposition 2.1, we know that Range(fα) ⊆ {0, 1}. Moreover,
either using Corollary 2.2 or Lemma 3.1 (or, further noting that fα(kb) = 0
for all k ∈ N), we have that {0} ⊆ Range(fα).

Now let us assume that fα(n) = 0 for all n ∈ N. Then, for all n ∈ N, we
have ⌊

n
a2

b2

⌋
=

⌊⌊
n
a

b

⌋a
b

⌋
.

Let r ∈
q
0, b2− 1

y
be arbitrary. Let a, b ∈ N be relatively prime and such

that a < b. By Proposition 3.2 applied to a2 and b2, there exists m ∈ N
such that φa2,b2(m) = r. Then

m
a2

b2
=

⌊
m
a2

b2

⌋
+
r

b2
. (3.2)

By Proposition 3.2, we have

m
a

b
=
⌊
m
a

b

⌋
+
φa,b(m)

b
(3.3)
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and ⌊
m
a

b

⌋ a
b

=

⌊⌊
m
a

b

⌋ a
b

⌋
+
φa,b
(⌊
ma

b

⌋)
b

. (3.4)

Multiplying (3.3) by a/b and using (3.4) we get

m
a2

b2
=

⌊⌊
m
a

b

⌋ a
b

⌋
+
φa,b
(⌊
ma

b

⌋)
b

+
φa,b(m)

b

a

b
. (3.5)

Now (3.5), (3.3) and (3.2) imply

r = aφa,b(m) + bφa,b
(⌊
ma

b

⌋)
.

Since φa,b(m), φa,b
(⌊
ma

b

⌋)
∈

q
0, b−1

y
and since r ∈

q
0, b2−1

y
was arbitrary,

Lemma 3.3 implies that a = 1. �

Remark 3.1. Note that, using Lemma 3.1, we can further rephrase the
dichotomy in Proposition 3.4 as follows: For α = a/b with a, b ∈ N relatively
prime and a < b, the equation

bα2nc =
⌈
αbαnc

⌉
is solvable for n in the set

q
0, b2 − 1

y
\ b

q
0, b− 1

y
.

Remark 3.2. The proof of Proposition 3.4 does not explicitly indicate how
to exhibit the value 1 in the Range(fα) in the case (ii). We show how this
can be achieved.

Let a, b ∈ N be relatively prime and such that 1 < a < b. Let n, k ∈ N be
such that they satisfy Bézout’s identity

a2n− b2k = 1.

Since

k <
a2

b2
n = k +

1

b2
< k + 1,

we deduce ⌊
a2

b2
n

⌋
= k.

Set ⌊a
b
n
⌋

= r.

Then, equivalently,

r <
a

b
n < r + 1.

Hence, an− br ∈ N. Therefore, since a > 1, we have

0 < a(an− br)− 1 = a2n− abr − a2n+ b2k = −abr + b2k = b(bk − ar).

Thus, l = bk − ar ∈ N, in particular ar < bk, and consequently,

a

b

⌊a
b
n
⌋

=
a

b
r =

ar

b
<
bk

b
= k.
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The last strict inequality yields⌊
a

b

⌊a
b
n
⌋⌋

< k.

In conclusion,

fa/b(n) =

⌊
a2

b2
n

⌋
−
⌊
a

b

⌊a
b
n
⌋⌋

> 0,

hence fa/b(n) = 1.

3.2. Supra-unitary rational parameters α. Throughout this subsec-
tion, we let α > 1 be a rational number which is not an integer. Our
first result settles the exact range of fα for supra-unitary rational numbers
with denominator 2.

Proposition 3.5. Let s ∈ N. Then

(i) Range
(
f2s+ 1

2

)
= {0, s} = s

q
0, 1

y
;

(ii) Range
(
f2s−1+ 1

2

)
= {0, s− 1, s} = s

q
0, 1

y
∪ (s− 1)

q
1, 1

y
.

Proof. We consider first the case where α = 2s+ 1
2 . Then, for all n ∈ N, we

have

bαnc = 2sn+
⌊n

2

⌋
=


2sn+

n

2
if n is even,

2sn+
n− 1

2
if n is odd.

Therefore,

⌊
αbαnc

⌋
=


4s2n+ 2sn+

⌊n
4

⌋
if n is even,

4s2n+ 2sn− s+
⌊n− 1

4

⌋
if n is odd.

Also, bα2nc = 4s2n+ 2sn+
⌊
n
4

⌋
. Thus,

bα2nc −
⌊
αbαnc

⌋
=


0 if n is even,

s+
⌊n

4

⌋
−
⌊n− 1

4

⌋
if n is odd.

Now, since
⌊n

4

⌋
−
⌊n− 1

4

⌋
= 0 for n odd, we obtain that

Range
(
f2s+ 1

2

)
= {0, s}.

Suppose next that α = 2s − 1 + 1
2 . Similar calculations to the ones for the

even case above show that, for all n ∈ N, we have

bαnc = 2sn+
⌊
− n

2

⌋
= 2sn−

⌈n
2

⌉
=


2sn− n

2
if n is even,

2sn− n+ 1

2
if n is odd,
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and ⌊
αbαnc

⌋
=


4s2n− 2sn+

⌊n
4

⌋
if n is even,

4s2n− 2sn− s+
⌊n+ 1

4

⌋
if n is odd,

and bα2nc = 4s2n− 2sn+
⌊n

4

⌋
. Consequently,

bα2nc −
⌊
αbαnc

⌋
=


0 if n is even,

s+
⌊n

4

⌋
−
⌊n+ 1

4

⌋
if n is odd.

Note now that
⌊n

4

⌋
−
⌊n+ 1

4

⌋
= −1 for n odd such that n ≡ 3 (mod 4),

while
⌊n

4

⌋
−
⌊n+ 1

4

⌋
= 0 for n 6≡ 3 (mod 4). This implies that

Range
(
f2s−1+ 1

2

)
= {0, s− 1, s}. �

In what follows, we explore the general situation in which the (non-
integer) rational number α > 1 has denominator b ∈ N\{1}. By the division
algorithm, we can express our parameter as

α = (sb+ u) +
a

b
,

where s ∈ N ∪ {0}, u ∈
q
0, b− 1

y
and a ∈

q
1, b− 1

y
. We have the following

decomposition of fα.

Proposition 3.6. Let b ∈ N \ {1}, s ∈ N ∪ {0}, u ∈
q
0, b − 1

y
and a ∈q

1, b− 1
y

. Then
fsb+u+a

b
= sφa,b + fu+a

b
,

where φa,b is the function defined in Proposition 3.2.

Proof. Straightforward calculations give that, for α = (sb+ u) + a
b , we have

bα2nc = (sb+ u)2n+ 2asn+
⌊2au

b
n+

a2

b2
n
⌋

= (sb+ u)2n+ 2asn− u2n+
⌊(a
b

+ u
)2
n
⌋
.

Next, we have

αbαnc = (sb+ u)2n+ asn+ sb
⌊a
b
n
⌋

+
au

b
n+

(a
b

+ u
)⌊a

b
n
⌋

= (sb+ u)2n+ asn+ sb
⌊a
b
n
⌋

+
2au

b
n+

a2

b2
n−

(a
b

+ u
) a

b
n

= (sb+ u)2n+ asn+ sb
⌊a
b
n
⌋
− u2n

+
(a
b

+ u
)2
n−

(a
b

+ u
) (a

b
+ u
)
n

= (sb+ u)2n+ asn+ sb
⌊a
b
n
⌋
− u2n+

(a
b

+ u
)⌊(a

b
+ u
)
n
⌋
.
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Thus,⌊
αbαnc

⌋
= (sb+ u)2n+ asn+ sb

⌊a
b
n
⌋
− u2n+

⌊(a
b

+ u
)⌊(a

b
+ u
)
n
⌋⌋

and

fα(n) = asn− sb
⌊a
b
n
⌋

+
⌊(a

b
+ u
)2
n
⌋
−
⌊(a

b
+ u
)⌊(a

b
+ u
)
n
⌋⌋

= sφa,b(n) + fu+a
b
(n). �

Two immediate consequences of the decomposition in Proposition 3.6 are
the following.

Corollary 3.7. Let b ∈ N\{1}, s ∈ N∪{0}, u ∈
q
0, b−1

y
and a ∈

q
1, b−1

y

relatively prime to b. Then

Range
(
fsb+u+a

b

)
⊆ s

q
0, b− 1

y
+

q
0, u+ 1

y
.

Proof. Noting that
⌈
u+ a

b

⌉
= u+1, the inclusion follows from Proposition 3.2

and Proposition 2.1 �

Corollary 3.8. Let b ∈ N\{1} and s ∈ N. Then

Range
(
fsb+ 1

b

)
= s

q
0, b− 1

y
.

Proof. By Proposition 3.6 and Proposition 3.4, part (i), for all n ∈ N we
have

fsb+ 1
b
(n) = sφ1,b(n) + f 1

b
(n) = sφ1,b(n).

The equality Range
(
fsb+ 1

b

)
= s

q
0, b− 1

y
now follows from Proposition 3.2.

�

While Proposition 3.6 provides a good starting point for identifying the
exact range of functions such as fsb+ 1

b
, we need a slightly modified version

of it to deal with other supra-unitary parameters of the form sb+u+ 1
b with

u > 0.

Lemma 3.9. Let b ∈ N\{1}, s ∈ N∪{0}, and u ∈
q
0, b−1

y
. Let n = bt+r

with t, r ∈
q
0, b− 1

y
. Then

fsb+u+ 1
b
(n) = sr +

⌊2ur

b
+
t

b
+
r

b2

⌋
−
⌊ur
b

+
t

b

⌋
.

In particular, for u = 0, we obtain fsb+ 1
b
(n) = sr, which implies the

statement of Corollary 3.8.

Proof. The calculations are similar to the ones in the proof of Proposi-
tion 3.6. We only present the essential identities. With α = bs + u + 1

b ,
we have

bα2nc = (bs+ u)2n+ 2sn+ 2ut+
⌊2ur

b
+
t

b
+
r

b2

⌋
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and ⌊
αbαnc

⌋
= (bs+ u)2n+ sn+ bst+ 2ut+

⌊ur
b

+
t

b

⌋
.

Therefore,

fα(n) = s(n− bt) +
⌊2ur

b
+
t

b
+
r

b2

⌋
−
⌊ur
b

+
t

b

⌋
= sr +

⌊2ur

b
+
t

b
+
r

b2

⌋
−
⌊ur
b

+
t

b

⌋
. �

Our next result states an inclusion relation that improves the inclusion
stated in Corollary 3.7 when a = 1.

Proposition 3.10. For all b ∈ N\{1}, all s ∈ N∪{0}, and all u ∈
q
0, b−1

y

such that sb+ u ∈ N, we have

Range
(
fsb+u+ 1

b

)
⊆ s

q
0, b− 1

y
+

q
0, u

y
.

Proof. Let α = sb + u + 1
b . Using the notation from Lemma 3.9, with

n = bt+ r and t, r ∈
q
0, b− 1

y
, we can rewrite

fα(n) = sr +
⌊2ur

b
+
n

b2

⌋
−
⌊(ub− 1)r

b2
+
n

b2

⌋
. (3.6)

Let us denote for simplicity

x(n, u) =
2ur

b
+
n

b2
and y(n, u) =

(ub− 1)r

b2
+
n

b2
.

Clearly, if u = 0, we have bx(n, u)c = by(n, u)c = 0. If u ≥ 1, we see that

x(n, u)− y(n, u) =
(ub+ 1)r

b2
≥ 0

and

x(n, u)− y(n, u) ≤ (ub+ 1)(b− 1)

b2
= u− u− 1

b
− 1

b2
< u.

Therefore,

0 ≤
⌊
x(n, u)− y(n, u)

⌋
≤
⌊
x(n, u)

⌋
−
⌊
y(n, u)

⌋
,

and ⌊
x(n, u)

⌋
−
⌊
y(n, u)

⌋
≤ bx(n, u)− y(n, u)c+ 1 ≤ (u− 1) + 1 = u.

In other words, for all n ∈
q
0, b2 − 1

y
and u ∈

q
0, b− 1

y
, we have⌊

x(n, u)
⌋
−
⌊
y(n, u)

⌋
∈

q
0, u

y
.

This finishes the proof. �

In particular, when u = 1, we get the following.

Corollary 3.11. For all b ∈ N\{1} and all s ∈ N ∪ {0} we have

Range
(
fsb+1+ 1

b

)
⊆ s

q
0, b− 1

y
+

q
0, 1

y
.
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Corollary 3.12. Let b ∈ N\{1}. Then

Range
(
f1+ 1

b

)
= {0, 1}.

Proof. Using Lemma 3.1 and Corollary 3.11, we only need to prove that
1 ∈ Range

(
f1+ 1

b

)
. We claim that f1+ 1

b
(b − 1) = 1. Indeed, letting s = 0,

u = 1, t = 0 and r = b − 1 in Lemma 3.9 (or, alternately, in the formula
(3.6)), we have

f1+ 1
b
(b− 1) =

⌊
2− b+ 1

b2

⌋
−
⌊b− 1

b

⌋
.

But since 1 < 2− b+1
b2

< 2 and 0 < b−1
b < 1, we get f1+ 1

b
(b− 1) = 1. �

A refinement of the argument in Corollary 3.12 gives the next result.

Corollary 3.13. Let b ∈ N\{1}. Then

Range
(
fb+1+ 1

b

)
=

q
0, b

y
.

Proof. Using again Lemma 3.1 and Corollary 3.11, it suffices to show thatq
1, b

y
⊆ Range

(
fb+1+ 1

b

)
. We proceed in two steps. First, we claim that

fb+1+ 1
b
(b2 − b+ 1) = 1. Indeed, letting s = 1, u = 1, t = b− 1 and r = 1 in

Lemma 3.9, and since 1 < 1 + b+1
b2

< 2, we get

fb+1+ 1
b

(
b2 − b+ 1

)
= 1 +

⌊
1 +

b+ 1

b2

⌋
− 1 = 1.

Secondly, let us fix r ∈
q
1, b − 1

y
. We will show that there exists a t(r) ∈q

0, b − 1
y

such that fb+1+ 1
b

(
bt(r) + r

)
= r + 1. Indeed, let s = u = 1 and

t = t(r) := b− 1− r in Lemma 3.9 and notice that

fb+1+ 1
b

(
bt+ r

)
= r +

⌊r
b

+
r

b2
+
b− 1

b

⌋
−
⌊b− 1

b

⌋
= r +

⌊
1 +

r − 1

b
+
r

b2

⌋
.

Next, observe that 0 < r−1
b + r

b2
< 1. The left-side inequality is trivial while

the right-side inequality is equivalent to (r − 1)b + r < b2 ⇔ r < b. This
proves the claim fb+1+ 1

b

(
b(b−1−r)+r

)
= r+1 and concludes our proof. �

The following corollary generalizes Corollaries 3.12 and 3.13.

Corollary 3.14. For all b ∈ N\{1} and s ∈ N ∪ {0} we have

Range
(
fsb+1+ 1

b

)
=
(
s
q
0, b− 1

y)
∪
(
s
q
1, b− 1

y
+ {1}

)
.

Proof. It is sufficient to consider s > 1. By Lemma 3.1 and Corollary 3.11,
it suffices to show that 1 6∈ Range

(
fsb+1+ 1

b

)
and s

q
1, b − 1

y
+ {0, 1} ⊆

Range
(
fsb+1+ 1

b

)
. First of all, using the notation from Lemma 3.9, for all

r ∈
q
1, b− 1

y
, we have fsb+1+ 1

b
(bt+ r) ≥ sr ≥ s > 1 (and, as we have seen

before, fsb+1+ 1
b
(bt) = 0). For the second claim, we will show that for fixed

r ∈
q
1, b− 1

y
, we can find t0(r), t1(r) ∈

q
0, b− 1

y
such that

fα
(
bt0(r) + r

)
= sr and fα

(
bt1(r) + r

)
= sr + 1.
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Equivalently, we want to show that, for fixed r ∈
q
1, b− 1

y
, the equations⌊2r

b
+
r

b2
+
t

b

⌋
=
⌊r
b

+
t

b

⌋
, (3.7)

respectively ⌊2r

b
+
r

b2
+
t

b

⌋
=
⌈r
b

+
t

b

⌉
(3.8)

are solvable in t ∈
q
0, b− 1

y
.

The equation (3.7) has the solution t0 = t0(r) = b−r. Indeed,
⌊r
b

+
t0
b

⌋
=

1 and
2r

b
+
r

b2
+
t0
b

=
r

b
+
r

b2
+ 1 ∈ (1, 2)

since r ≤ b−1 <
b2

b+ 1
, therefore also

⌊2r

b
+
r

b2
+
t0
b

⌋
= 1. The equation (3.8)

has the solution t1(r) = b−1−r by the argument proving Corollary 3.13. �

Similar considerations to the ones proving Proposition 3.10 and Corol-
lary 3.14 give the following result.

Corollary 3.15. Let b ∈ N\{1} and s ∈ N. Then

Range
(
fsb−1+ 1

b

)
=
(
s
q
0, b− 1

y)
∪
(
s
q
1, b− 1

y
− {1}

)
.

Proof. Let α = sb − 1 + 1
b = (s − 1)b + (b − 1) + 1

b . With s replaced by
s−1 ∈ N∪{0}, and u = b−1, in the proof of Proposition 3.10, we find that
(3.6) can be rewritten as

fα(n) = (s− 1)r +
⌊2(b− 1)r

b
+
n

b2

⌋
−
⌊((b− 1)b− 1)r

b2
+
n

b2

⌋
.

As before, letting now n = bt+ r with t, r ∈
q
0, b− 1

y
, a few simple manip-

ulations yield

fα(bt+ r) = sr −
(⌊r
b

+
t

b

⌋
−
⌊
− 2r

b
+
r

b2
+
t

b

⌋)
. (3.9)

Denote

x(b, t, r) =
r

b
+
t

b
and y(b, t, r) = −2r

b
+
r

b2
+
t

b
.

We have

x(b, t, r)− y(b, t, r) =
(b− 1)r

b2
∈
(

0,
(b− 1)2

b2

]
⊆ (0, 1).

This implies that
⌊
x(b, t, r)− y(b, t, r)

⌋
= 0, thus⌊

x(b, t, r)
⌋
−
⌊
y(b, t, r)

⌋
∈ {0, 1}. (3.10)

Using (3.9) and (3.10), we conclude that

Range
(
fsb−1+ 1

b

)
⊆ s

q
0, b− 1

y
− {0, 1}.

Since −1 6∈ Range
(
fsb−1+ 1

b

)
, we have

Range
(
fsb−1+ 1

b

)
⊆
(
s
q
0, b− 1

y)
∪
(
s
q
1, b− 1

y
− {1}

)
.
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For the converse inclusion, as in the proof of Corollary 3.14, it suffices to
show that

s
q
1, b− 1

y
− {0, 1} ⊆ Range

(
fsb−1+ 1

b

)
,

which is equivalent to showing that for fixed r ∈
q
1, b − 1

y
, we can find

t(r), t̃(r) ∈
q
0, b− 1

y
such that

fα
(
bt(r) + r

)
= sr and fα

(
bt̃(r) + r

)
= sr − 1.

Equivalently, we want to show that, for fixed r ∈
q
1, b− 1

y
, the equations⌊

− r

b
+
t

b

⌋
=
⌊
− 2r

b
+
r

b2
+
t

b

⌋
, (3.11)

respectively ⌊
− r

b
+
t

b

⌋
= 1 +

⌊
− 2r

b
+
r

b2
+
t

b

⌋
(3.12)

are solvable in t ∈
q
0, b−1

y
. The equation (3.11) has the solution t(r) = r−1.

The equation (3.12) has the solution t̃(r) = r. �

The exact range results stated in Proposition 3.5, Corollary 3.8, Corol-
lary 3.14 and Corollary 3.15 capture some generic supra-unitary (non-integer)
rational parameters α with denominator b ≥ 2. Specifically, we understand
precisely the cases where α = k+ 1

b and k ≡ u (mod b) with u ∈ {0, 1, b−1},
but, even in the small denominator cases, we are missing lots of the rational
supra-unitary parameters. The result below is a counterpart to Proposi-
tion 3.5 which settles the exact ranges for all supra-unitary rational param-
eters with denominator 3.

Proposition 3.16. Let s ∈ N. Then

(i) Range
(
f3s+ 1

3

)
= {0, s, 2s};

(ii) Range
(
f3s+ 2

3

)
= {0, s, 2s, 2s+ 1};

(iii) Range
(
f3s−2+ 1

3

)
= {0, s− 1, s, 2s− 2, 2s− 1};

(iv) Range
(
f3s−2+ 2

3

)
= {0, s− 1, s, 2s− 1};

(v) Range
(
f3s−1+ 1

3

)
= {0, s− 1, s, 2s− 1, 2s};

(vi) Range
(
f3s−1+ 2

3

)
= {0, s− 1, s, 2s− 1, 2s}.

Proof. (i) follows from Corollary 3.8, (iii) follows from Corollary 3.14 (via
the substitution s→ s− 1) and (v) follows from Corollary 3.15.

(ii) Let α = 3s + 2
3 . Based on Lemma 3.1, we know that 0 ∈ Range(fα)

and for all the other values in Range(fα) we can concentrate on computing
fα(n) with n ∈

q
0, 8

y
. For such an n, we have

α2n = 9s2n+ 4sn+
4n

9
⇒ bα2nc = 9s2n+ 4sn+

⌊4n

9

⌋
.

Similarly, we compute⌊
αbαnc

⌋
= 9s2n+ 2sn+ 3s

⌊2n

3

⌋
+

⌊
2

3

⌊2n

3

⌋⌋
.
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Hence,

fα(n) = 2sn− 3s
⌊2n

3

⌋
+
⌊4n

9

⌋
−
⌊

2

3

⌊2n

3

⌋⌋
. (3.13)

Using (3.13), we compute:

fα(3) = fα(6) = 0, fα(2) = fα(5) = fα(8) = s,

fα(1) = fα(4) = 2s, fα(7) = 2s+ 1.

(iv) Let α = 3s− 2 + 2
3 = 3s− 4

3 . After some algebraic manipulations, we
obtain

fα(n) = −sn+ 3s
⌈n

3

⌉
+
⌊7n

9

⌋
−
⌈n

3

⌉
−
⌊
n

3
+

1

3

⌈n
3

⌉⌋
. (3.14)

Using (3.14), we can now compute:

fα(3) = fα(6) = 0, fα(2) = fα(5) = s− 1,

fα(8) = s, fα(1) = fα(4) = fα(7) = 2s− 1.

(vi) Let α = 3s− 1 + 2
3 = 3s− 1

3 . Since n ∈
q
0, 8

y
, we have

fα(n) = −sn+ 3s
⌈n

3

⌉
−
⌊

1

3

⌈n
3

⌉⌋
. (3.15)

Using (3.15), we obtain:

fα(3) = fα(6) = 0, fα(8) = s− 1, fα(2) = fα(5) = s,

fα(7) = 2s− 1, fα(1) = fα(4) = 2s,

completing the proof. �

Besides the general cases already settled above and performing ad-hoc
calculations in the small denominators cases, such as in Proposition 3.5 or
Proposition 3.16, identifying the exact Range(fα) for supra-unitary rational
values of α seems to be a rather difficult task. It is not clear to these authors
how to proceed in general for such parameters beyond the situations already
addressed above. For example, our Wolfram Mathematica experimentations,
see [4], are pretty convincing that the following statement should be true,
but we are unable to prove it.

Conjecture 3.17. For all b ∈ N\{1}, all a ∈
q
1, b− 1

y
relatively prime to

b, and all s ∈ N we have

Range
(
fsb−a

b

)
=
(
s
q
0, b− 1

y)
∪
(
s
q
1, b− 1

y
− {1}

)
.

If indeed true, Conjecture 3.17 would generalize Corollary 3.15 which
corresponds to a = b−1. The following lemma is in the spirit of Lemma 3.9.
The calculations are similar to the ones done there and left to the interested
reader. We include it here since it may indicate a possible direction to deal
with cases such as those in Conjecture 3.17.
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Lemma 3.18. Let b ∈ N \ {1}, u ∈
q
0, b − 1

y
and a ∈

q
1, b − 1

y
. Let

n = bt+ r, with t, r ∈
q
0, b− 1

y
. Then

fsb+u+a
b
(n) = sar−(sb+u)

⌊ar
b

⌋
+

⌊
2uar

b
+
a2t

b
+
a2r

b2

⌋
−
⌊
uar

b
+
a2t

b
+
a

b

⌊ar
b

⌋⌋
.

4. Irrational parameters α

The goal of this section is to discuss a generalization of [3] and present
several conjectures inspired by it and from extensive experimentations in
Wolfram Mathematica, see [4].

4.1. Generalized golden ratios. Given t ∈ N such that

t 6∈
{

(s− 1)s : s ∈ N
}
,

we let

α(t) :=
1 +
√

1 + 4t

2
; (4.1)

note that α(t) ∈ (R\Q)∩(1,∞). The number α(1) = ϕ is the famous golden
ratio; α(504) = τ is the irrational number in [3]. Our main goal is to prove
the following.

Proposition 4.1. For all t ∈ N and α(t) as in (4.1), we have

Range(fα(t)) =
q
1, bα(t)c

y
.

Proof. Fix t ∈ N and simply write α(t) = α for ease of notation. Let n ∈ N.
We begin by observing that α2 − α = t, hence α2n = tn+ αn. Therefore

fα(n) = tn+ bαnc −
⌊
αbαnc

⌋
.

Our first goal is to show that 0 < fα(n) < α. Since fα(n) ∈ Z, this in turn
will give that 1 ≤ fα(n) ≤ bαc for all n ∈ N, and hence the inclusion of sets

Range(fα(t)) ⊆
q
1, bα(t)c

y
.

Note that, by (1.1), we have

fα(n) < tn+ bαnc − (αbαnc − 1)

= tn+ 1− (α− 1)bαnc
= tn+ 1− (α− 1)(αn− αn )

= n(t− α(α− 1)) + 1 + (α− 1) αn

= 1 + (α− 1) αn

< 1 + (α− 1)

= α.

Similarly, we can write

fα(n) > tn+ bαnc − αbαnc
= tn− (α− 1)bαnc
= tn− (α− 1)(αn− αn )
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= (α− 1) αn

> 0;

the last strict inequality uses the fact that α > 1 and α 6∈ Q (that is, αn = 0
is equivalent to α = bαnc/n ∈ Q). We record for future purposes that we
obtained the stronger inequalities

(α− 1) αn < fα(n) < 1 + (α− 1) αn , ∀n ∈ N. (4.2)

We will prove next the inclusion

Range(fα(t)) ⊇
q
1, bα(t)c

y
.

The essential tool in this regard is Kronecker’s approximation theorem [13]
which states that for irrational α, the set

{
αn : n ∈ N

}
is dense in [0, 1].

Let m ∈
q
1, bαc

y
. Since m/α ∈ (0, 1), we have that

∀ε > 0 ∃n ∈ N :
m

α
− ε < αn <

m

α
+ ε. (4.3)

Let ε = α /t ∈ (0, 1). We will break our discussion into two cases. If
m = bαc, by (4.3), there exists some n ∈ N such that

(α− 1) αn > (α− 1)
bαc
α
− (α− 1)

α

α(α− 1)
.

By (4.2), we get that

fα(n) > (α− 1)
bαc
α
− α

α
= bαc − bαc+ α

α
= bαc − 1.

Since fα(n) ≤ bαc, we get that fα(n) = bαc.
If 1 ≤ m ≤ bαc − 1, since ε < 1

α(α−1) , from (4.3) we get some n ∈ N such

that
m(α− 1)

α
− 1

α
< (α− 1) αn <

m(α− 1)

α
+

1

α
.

Thus, by (4.2) again, we have

fα(n) < 1 +
m(α− 1)

α
+

1

α
= m+ 1− m− 1

α
< m+ 1

and

fα(n) >
m(α− 1)

α
− 1

α
> m− 1,

because m < α− 1. Therefore, fα(n) = m. �

In particular, we get

Range(fϕ) = {1} and Range(fτ ) =
q
1, 22

y
.

A slight refinement of the first part of the proof of Proposition 4.1 yields
the following result.

Proposition 4.2. Let p ∈ N, t ∈ N and α(t) as in (4.1). Then

Range
(
fpα(t)

)
⊆

q
1, bpα(t)c

y
. (4.4)
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Proof. Fix p, t ∈ N and simply write β = pα(t) for ease of notation. Let
n ∈ N. We begin by observing that β2− pβ = p2t, hence β2n = p2tn+ pβn.
Therefore

fβ(n) = p2tn+ bpβnc −
⌊
βbβnc

⌋
.

We will show the inclusion Range(fβ) ⊆
q
1, bβc

y
. The main observation

used in the estimates below is that

pbxc ≤ bpxc ≤ pbxc+ (p− 1) ∀p ∈ N, ∀x ≥ 0. (4.5)

Then, by (4.5), we have

fβ(n) < p2tn+ pbβnc+ (p− 1)− (βbβnc − 1)

= p2tn+ p− (β − p)bβnc
= n(p2t− β(β − p)) + p+ (β − p) βn
= p+ (β − p) βn
< p+ (β − p)
= β.

Similarly, using again (4.5), we can write

fβ(n) > p2tn+ pbβnc − βbβnc
= p2tn− (β − p)bβnc
= p2tn− (β − p)

(
βn− βn

)
= (β − p) βn
> 0;

the last strict inequality uses the fact that β > p and β 6∈ Q. The required
inclusion follows. �

It is useful to note that in the preceding proof we obtained the stronger
inequalities

(β − p) βn < fβ(n) < p+ (β − p) βn , ∀n ∈ N. (4.6)

When we attempt to adapt the proof of Proposition 4.1 to demonstrate the
converse inclusion in (4.4) for p ≥ 2, the “obvious” choice of ε in Kronecker’s
approximation theorem, using now (4.6) instead of (4.2), significantly limits
the range of m.

4.2. Conjectures and partial results. By Proposition 2.1 we have

Range(fα) ⊆
q
0, dαe

y
. (4.7)

Based on Wolfram Mathematica experimentation, see [4], we state the fol-
lowing

Conjecture 4.3. For all positive irrational numbers α, we have
q
1, bαc

y
⊆ Range(fα).
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If Conjecture 4.3 is true, then we have the equality in Proposition 4.2.
Assuming Conjecture 4.3 holds, together with the inclusion in (4.7), sug-

gests the following quadruplicity of the range result.

Proposition 4.4. If Conjecture 4.3 is true, then for all positive irrational
parameters α, one of the following equalities holds:

(A) Range(fα) =
q
1, bαc

y
,

(B) Range(fα) =
q
0, bαc

y
,

(C) Range(fα) =
q
1, dαe

y
,

(D) Range(fα) =
q
0, dαe

y
.

Proof. The equality in (A) holds for all irrational parameters considered in
Proposition 4.1. In particular, we have Range(fϕ) = {1}.

The equality in (D) holds for π and e. We used Wolfram Mathematica to
calculate

fπ(1) = 0, fπ(2) = fπ(3) = 1, fπ(4) = fπ(5) = 2, fπ(6) = 3, fπ(7) = 4,

and

fe(7) = fe(10) = 0, fe(2) = fe(3) = fe(5) = fe(6) = fe(9) = 1,

fe(1) = fe(4) = fe(8) = 2, fe(11) = 3.

The equality in (C) holds for α =
√

2. Indeed,

Range
(
f√2

)
= {1, 2}.

First, f√2(k) = k for k ∈ {1, 2}, so {1, 2} ⊆ Range
(
f√2

)
. Next, fix n ∈ N

and set m =
⌊√

2n
⌋
. By the definition of the floor, m ≤

√
2n < m + 1.

Since
√

2n is irrational, in fact m <
√

2n < m+1. Multiplying by
√

2 gives

2n−
√

2 <
√

2m < 2n,

hence
⌊√

2m
⌋
∈ {2n− 2, 2n− 1}. Therefore

f√2(n) = 2n−
⌊√

2 b
√

2nc
⌋

= 2n−
⌊√

2m
⌋
∈ {1, 2}.

Thus Range
(
f√2

)
⊆ {1, 2}, which, together with the converse inclusion,

yields Range
(
f√2

)
= {1, 2}.

The equality in (B) holds for α = 2 +
√

2. That is,

Range
(
f2+
√

2

)
= {0, 1, 2, 3}.

The inclusion {0, 1, 2, 3} ⊆ Range
(
f2+
√

2

)
follows from the equalities

f2+
√

2(1) = 1, f2+
√

2(2) = 3, f2+
√

2(3) = 0, f2+
√

2(4) = 2.

To prove the converse inclusion we use the following two properties of the
floor function. For every positive real number x with r =

⌊
4
(
x − bxc

)⌋
∈

{0, 1, 2, 3} we have

b4xc = 4bxc+ r.
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For all positive integers n ∈ N and all positive real numbers x we have

n− bxc = dn− xe.
Let n ∈ N be arbitrary. A straightforward calculation shows that

f2+
√

2(n) = 2n+
⌊
4
√

2n
⌋
− 2
⌊√

2n
⌋
−
⌊
2
√

2n+
√

2b
√

2nc
⌋
.

Set b
√

2nc = m. Then there exists r ∈ {0, 1, 2, 3} such that b4
√

2nc =
4m+ r. Hence,

f2+
√

2(n) = 2n+ 4m+ r − 2m−
⌊
2
√

2n+
√

2m
⌋

=
⌈
2n+ 2m+ r − 2

√
2n−

√
2m
⌉

= dwe.
Next, we will obtain an estimate for the positive irrational number, we

called it w, whose ceiling is the value f2+
√

2(n). First, it follows from

b4
√

2nc = 4m+ r that

m+
r

4
<
√

2n < m+
r + 1

4
,

and, equivalently,

√
2n− r + 1

4
< m <

√
2n− r

4
.

Transforming linearly the preceding two inequalities and adding them we
obtain

−r + 1

2
+
r

4

√
2 < 2n+ 2m− 2

√
2n−

√
2m < −r

2
+
r + 1

4

√
2.

Adding r ∈ {0, 1, 2, 3} to each term of the preceding inequalities and sim-
plifying the left and righ expression, we get inequalities for w

(2 +
√

2)r − 2

4
< w <

(2 +
√

2)r +
√

2

4
.

Considering the extreme cases for r ∈ {0, 1, 2, 3}, that is r = 0 on the
left-hand side and r = 3 on the right-hand side, we get the following open
interval membership for w:

w ∈
(
−1

2
,
3

2
+
√

2

)
.

Consequently,

f2+
√

2(n) = dwe ∈ {0, 1, 2, 3}.
Since n ∈ N was arbitrary, this proves Range

(
f2+
√

2

)
⊆ {0, 1, 2, 3}, and

completes the proof. �

The conjectured statements in Proposition 4.4 account for the seemingly
deep differences among positive irrational numbers. It would be interesting
to explore these differences further. We state two more conjectures.
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Conjecture 4.5. For all irrational numbers α ∈ (0, 1) we have

Range(fα) = {0, 1}.
That is, all irrational α ∈ (0, 1) satisfy the equality in item (D) in Proposi-
tion 4.4.

Remark 4.1. By Corollary 2.2, the preceding conjecture is equivalent to
1 ∈ Range(fα), which in turn is equivalent to the following statement: For
every x > 1 there exists k ∈ N such that⌊

xdxke
⌋
≥
⌈
x2k
⌉
.

While Conjecture 4.5 was formulated based on experiments in Wolfram
Mathematica, we now aim to provide some partial rigorous evidence in sup-
port of its validity.

Our first observation is that Conjecture 4.5 holds for all sub-unitary num-
bers α in some right-neighborhood of a square-root rational. We first set
some notation. Let k, n ∈ N be such that k < n and assume that

√
k/n is

irrational. In this case, we call
√
k/n a square-root rational, and denote it

by sk,n. With k, n as above, we also write

εk,n =
1

n
min

{⌈√
kn
⌉
−
√
kn,
√
kn−

⌊√
kn
⌋}

> 0.

Proposition 4.6. Let k, n ∈ N be such that k < n and sk,n irrational. If
α ∈ [sk,n, sk,n + εk,n), then fα(n) = 1.

Proof. Let x, y ∈ R. The following three statements follow from the defini-
tions of the floor and ceiling function:

bxc < y ⇔ bxc < dye ⇔ x < dye
Let k, n ∈ N be such that k < n and assume that sk,n =

√
k/n is

irrational. Notice that sk,n is irrational if and only if
√
kn is irrational. To

evaluate fsk,n(n) we calculate(√k

n

)2

n

 = k,

and estimate⌊√
k

n

⌊√
k

n
n

⌋⌋
=

⌊√
k

n

⌊√
kn
⌋⌋

<

√
k

n

⌊√
kn
⌋
<

√
k

n

√
kn = k.

Therefore fsk,n(n) = 1.
Let x be a nonnegative real number such that x < εk,n. In particular,

x <
1

n

(⌈√
kn
⌉
−
√
kn
)
.

Then ⌊√
kn
⌋
≤

⌊(√
k

n
+ x

)
n

⌋
≤
√
kn+ xn <

⌈√
kn
⌉
,
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and consequently,⌊
sk,n + x

⌋
=

⌊(√
k

n
+ x

)
n

⌋
=
⌊√

kn
⌋
.

Since we also have

x <
1

n

(√
kn−

⌊√
kn
⌋)

<
1

n

√
kn⌊√
kn
⌋(√kn− ⌊√kn⌋),

we can estimate⌊
(sk,n + x)

⌊
(sk,n + x)n

⌋⌋
=

⌊(√
k

n
+ x

)⌊(√
k

n
+ x

)
n

⌋⌋

≤

(√
k

n
+ x

)⌊√
kn
⌋

<
1

n

(
√
kn+

kn⌊√
kn
⌋ −√kn)⌊√kn⌋

= k.

Clearly, ⌊
(sk,n + x)2n

⌋
=

⌊(√
k

n
+ x

)2

n

⌋
= k (4.8)

if and only if

x <

√
k + 1−

√
k√

n
=

1
√
n
(√
k + 1 +

√
k
) .

Since

x < εk,n <
1

2n
<

1
√
n
(√
k + 1 +

√
k
) ,

we deduce that (4.8) holds with so chosen x. Since under this estimate we
also have ⌊

(sk,n + x)
⌊
(sk,n + x)n

⌋⌋
< k,

we have proved that for α = sk,n + x we have fα(n) = 1. �

Our second observation in support of the validity of Conjecture 4.5 is the
calculation of the sets

Am =
{
α ∈ (0, 1] : fα(m) = 1

}
,

where m ∈ N \ {1}. With this notation, and using Proposition 3.4, Conjec-
ture 4.5 can be restated as⋃{

Am : m ∈ N \ {1}
}

= (0, 1) \
{1

b
: b ∈ N

}
.
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We wrote Wolfram Mathematica code that calculates the sets Am and
their finite unions. For example,

50⋃
m=2

Am =

[
1

5
√

2
,
1

7

)
⋃[ 1

4
√

3
,

7

48

)⋃[ 1√
47
,
1

6

)
⋃[ 1√

35
,

6

35

)⋃[ 1√
34
,
1

5

)
⋃[√2

7
,
10

49

)⋃[ 1

2
√

6
,
1

4

)
⋃[√ 3

47
,
1

3

)⋃[√ 5

44
,
1

2

)⋃[
2

√
3

47
, 1

)
≈

[
0.14142, 0.14286

)
∪
[
0.14434, 0.14583

)
∪
[
0.14586, 0.16667

)
∪
[
0.16903, 0.17143

)
∪
[
0.1715, 0.2

)
∪
[
0.20203, 0.20408

)
∪
[
0.20412, 0.25

)
∪
[
0.25265, 0.33333

)
∪
[
0.3371, 0.5

)
∪
[
0.50529, 1

)
Figure 1 displays the individual sets Am for m ∈ {2, . . . , 50}, rendered

in rainbow colors and arranged vertically, with A2 at the bottom and A50

at the top. The union of these sets is shown in black at the very bottom
of the image. The union consists of 10 intervals. Among the 9 gaps be-
tween successive intervals, three are particularly narrow. These occur near
0.1458, 0.1715, and 0.2041, with respective widths of approximately 0.00003,
0.00007, and 0.00004. Even at a magnification of 5000%, only the second
gap is barely discernible in the PDF image.

0 11

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

Figure 1. The sets A2, . . . , A50 in rainbow colors and their union in black

The only positive irrational number α for which the function fα is constant
that we encountered in our explorations is α = ϕ, the golden ratio. Therefore
we conjecture:

Conjecture 4.7. For all positive irrational α we have

Range(fα) = {1} ⇔ α = ϕ.
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Remark 4.2. We disprove the following invariance conjecture: For all ir-
rational α > 1 and all p ∈ N, if Range(fα) satisfies the equality in item
(X), where X ∈ {A, B, C, D}, then Range(fpα) would also satisfy the same
equality.

To disprove this conjecture, consider α = 1 + 1/
√

2 and calculate

fα(1) = 1, fα(2) = 0, fα(7) = 2.

Since dαe = 2, by Proposition 2.1 we have Range(fα) = {0, 1, 2}. Hence,
α = 1 + 1/

√
2 satisfies the equality in item (D) in Proposition 4.4. Notice

that 2α = 2+
√

2. We proved in the proof of Proposition 4.4 that 2α = 2+
√

2
satisfies the equality in item (B) in Proposition 4.4.

We conclude with a couple of remarks regarding variations of the function
fα discussed here.

Remark 4.3. Throughout this article, we worked with the domain of the
function fα being the set of positive integers. Naturally, one may ask what
happens if we consider the domain as being the set of negative integers. For
this, we note that, since dxe = −b−xc, given n ∈ N we have

fα(−n) = −gα(n),

where now gα : N→ Z, gα(n) =
⌈
α2 n

⌉
−
⌈
αdαne

⌉
. In other words, fα(−N) =

−gα(N); the analysis of the Range(gα) will most likely be of a similar flavor
to one we have seen for Range(fα).

Remark 4.4. Finally, one may ask about negative parameters α. Note now
that for α < 0, we can write fα = h−α where, for n ∈ N and β > 0, we have
denoted

hβ(n) =
⌊
β2 n

⌋
−
⌊
βdβne

⌋
.

This is yet another variation on the function fα. There are a few other
such variants, obtained by appropriately interchanging the floor and ceiling
operations in the definition of fα. The analysis of their ranges is left to the
interested reader.
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