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1 Introduction

Let S = {x1, . . . , xm} be a finite set of distinct points in a real linear space L.
The familiar convex sets associated with S are the convex hull of S

conv S =






m∑

j=1

ξj xj : xj ∈ S, ξj ≥ 0,
m∑

j=1

ξj = 1




 (1.1)

and the affine hull of S

aff S =






m∑

j=1

ξj xj : xj ∈ S, ξj ∈ R,
m∑

j=1

ξj = 1




.

The set in (1.1) will not change if the conditions ξj ≥ 0 are replaced by the
conditions ξj ∈ [0, 1], j = 1, . . . ,m. This leads us to ask the following natural
question: How will the set on the right-hand side of (1.1) change when the
conditions ξj ≥ 0 are replaced by the conditions ξj ∈ Ij, j = 1, . . . ,m, where
Ij are arbitrary nonempty intervals in R? An immediate and obvious answer
is that the resulting set will always be a subset of aff S. In this article we
explore this question further. That is, we study the subsets of L introduced
by the following definition.

Definition 1.1 Let S = {x1, . . . , xm} be a finite set of distinct points in a
linear space L. Let JS = {I1, . . . , Im} be a family of nonempty intervals in R

(some of which can be degenerated to a singleton) such that the interval Ij is
associated with the point xj for each j ∈ {1, . . . ,m}. Set

co(S,JS) :=






m∑

j=1

ξj xj : xj ∈ S, ξj ∈ Ij,
m∑

j=1

ξj = 1




.

This set we call a convex interval hull of S.

It is clear that the convex interval hull co(S,JS) coincides with conv S when
all the intervals in JS are equal to [0, 1] and co(S,JS) coincides with aff S
when all the intervals in JS are equal to R. In this sense co(S,JS) generalizes
these two well-known concepts.

Our primary interest in this article is to explore the family of all convex interval
hulls co(S,JS) which are bounded. Examples in Section 2 show that a variety
of convex sets appear in such families even if S is fixed. It is quite striking
that when S is the set of only 4 points: the vertices and the orthocenter of an
equilateral triangle, for example

S =
{(

−1, 0
)
,
(
0, 1

)
,
(
0,
√

3
)
,
(
0, 1/

√
3

)}
,
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and when

JS =
{
[0, 1], [0, 1], [0, 1],

[
1 −

√
3,−2 +

√
3
]}

,

then co(S,JS) is a regular dodecagon; see Figure 12.

An inverse problem in this setting is as follows: For a given convex set K
find a finite set S with minimal cardinality and a family JS of intervals such
that K = co(S,JS). Examples 2.7 and 2.10 suggest solutions of the inverse
problem for K equal to a regular dodecagon and for K equal to a rhombic
dodecahedron. This inverse problem and unbounded convex interval hulls will
be considered elsewhere.

Let m be a positive integer. For a fixed family J of m nonempty intervals in
R our operator S 7→ co(S,J ) is a set-valued function defined on finite subsets
of L with m elements. Recall that many set-valued functions f considered in
convexity theory are described in the following way:

f(X) =
⋂{

F ∈ F : X ⊂ F
}
, X ⊂ L, (1.2)

where F is a prescribed family of subsets of L. The convex hull itself and many
well-known generalizations of it are obtained in this way, see for example [2]
and [6]. An immediate consequence of definition (1.2) is the inclusion X ⊆
f(X). From examples in Section 2 and our results in Section 6 it is clear that
the convex interval hull does not always satisfy the inclusion S ⊆ co(S,JS).
As a matter of fact, for every set S there are families of intervals JS for which
S is not a subset of co(S,JS). In this sense our operator differs from operators
described by (1.2).

Definitions similar to Definition 1.1 appeared in [4] and [5]. We recall the
following three definitions from [5, p. 363]. First, for nonempty sets Λ ⊂ R

m

and S ⊂ L denote by Λ·S ⊂ L the set of all
∑m

j=1 λjsj, where (λ1, . . . , λm) ∈ Λ
and sj ∈ S, j = 1 . . . ,m. Second, a set S ⊂ L is called endo -Λ if Λ · S ⊆ S.
Third, with F being the family of all endo-Λ sets, (1.2) defines the Λ-hull

operator. A special case of Λ-hull operator with Λ =
{
(ξ, 1−ξ) : ξ ∈ ∆

}
⊂ R

2,

where ∆ is any non-empty subset of [0, 1] containing at least one point interior
to [0, 1], was considered in [4]. In [4] endo-Λ sets are called ∆-convex sets. (We
notice that Motzkin in [5] does not refer to [4].)

In this paragraph we point out the differences between the definitions of Λ ·S
and co(S,JS). To this end, let Λ be the intersection of I1 × · · · × Im and
the hyperplane

∑m
j=1 ξj = 1, where Ij are nonempty intervals in R, and let

S = {x1, . . . , xm}, where x1, . . . , xm are distinct points in L. Then, in general,
Λ·S contains more linear combinations than co(S, JS). The first reason for this

is that, with
(
ξ1, . . . ξm

)
∈ Λ,

∑m
j=1 ξjsj ∈ Λ ·S whenever s1, . . . , sm ∈ S, while

for
∑m

j=1 ξjxj ∈ co(S,JS) it is essential that x1, . . . , xm are distinct points in
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S. For example, with s1 = · · · = sm = s ∈ S, the condition
∑m

j=1 ξj = 1 implies
S ⊂ Λ · S, while S ⊂ co(S,JS) is not true in general. The second reason is
that in the definition of co(S,JS) the point xj ∈ S, for fixed j ∈ {1, . . . ,m}, is
scaled only by scalars in Ij, while there is no such restriction in the definition
of Λ ·S. We also remark that the geometry of the sets Λ ·S and the properties
of the operator S 7→ Λ · S for a fixed Λ were not considered in [4] and [5].

The following geometric way of looking at co(S,JS) will be very useful in the
investigation of combinatorial properties of co(S,JS). Notice that the restric-
tions imposed on ξ = (ξ1, . . . , ξm) in Definition 1.1 mean that ξ belongs to
the intersection D of the brick I1 × · · · × Im ⊂ R

m and the hyperplane Π1 de-
fined by

∑m
j=1 ξj = 1. Thus co(S,JS) is an image of D under a linear mapping

TS : R
m → L defined by

TS(ξ1, ξ2, . . . , ξm) :=
m∑

j=1

ξjxj. (1.3)

The article is organized as follows. In Section 2 we give several illustrative
examples of convex interval hulls in R

2 and R
3 for sets S with three, four

and five points. In Section 3 we characterize nonemptyness and boundedness
of co(S,JS). In Section 4 we prove that all bounded convex interval hulls are
polytopes. Here we provide two upper bounds for the number of vertices of such
polytopes. The first bound is general and the second one deals with polytopes
obtained as co(S,JS) for a special class of families JS. As we have already
noticed, different families of intervals can result in the same convex interval
hulls. In Section 5 we study minimality conditions for a family of intervals,
where minimality is understood in such a way that any further shrinking of
intervals results in a smaller convex interval hull. In Section 6 we prove that a
family of bounded convex interval hulls of a fixed finite set S is invariant under
homotheties. As a special case of this result we obtain that for each homothet
K of conv S there exists a family of intervals JS such that K = co(S,JS). We
use this result to give a detailed description of bounded convex interval hulls
of finite affinely independent subsets of a linear space.

In this paragraph we introduce the notation. By R we denote the real numbers.
The symbol L denotes a real linear space and ‖ · ‖ is a norm in this space.
A specific linear space that we will encounter is R

m, where m is a positive
integer. The linear operations from L are extended to subsets of L in the
following standard way. For subsets K and M of L and α, β ∈ R we put

αK + βM =
{
αx + βy : x ∈ K, y ∈ M

}
.

For a mapping T : L → L, T (K) denotes the set of all Tx, x ∈ K.
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Fig. 1. Square Fig. 2. Pentagon Fig. 3. Regular hexagon

Fig. 4. Regular pentagon Fig. 5. Regular octagon Fig. 6. Nonagon

2 Examples

In this section we present several examples of convex interval hulls. All exam-
ples here are bounded sets, since our main interest in this article are convex
interval hulls which are bounded sets. We will consider unbounded convex in-
terval hulls elsewhere. For completeness we start with the standard example.

Example 2.1 Let S = {x1, . . . , xm} be a finite set of points in a linear space
L and let JS = {I1, . . . , Im} with Ij = [0, tj], where tj ≥ 1, j = 1, . . . ,m. Then

co(S,JS) = conv S.

All examples are calculated and plotted using Mathematica. In each example
the points of the set S are listed starting from the lowest point that is further-
most to the left. Then we proceed counterclockwise, finishing with the point
inside. In each figure the points in S are marked with black dots (•) and the

polygon co
(
S,JS

)
is shaded gray with its edges slightly darker.

Example 2.2 In Figures 1 and 2, we use S =
{
(0, 0), (1, 0), (0, 1)

}
. In Fig. 1

we use JS =
{
[−1, 1], [0, 1], [0, 1]

}
to get a square and in Fig. 2 we use JS =

{
[0, 1], [0, 2/3], [0, 2/3]

}
to get an irregular pentagon.
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Example 2.3 In Fig. 3 we use

S =
{
(−1, 0), (0, 1), (0,

√
3)

}
and JS =

{
[0, 2/3], [0, 2/3], [0, 2/3]

}
,

to get a regular hexagon.

Example 2.4 In Fig. 4 we use

S =
{(

0,−5 − 2
√

5
)
,
(√

10 + 2
√

5,
√

5
)
,
(
0, 5

)
,
(
−

√
10 + 2

√
5,
√

5
)}

,

JS =
{
[0, 3 −

√
5], [0, 2], [−1, 1], [0, 2]

}
,

to get a regular pentagon.

Example 2.5 In Fig. 5 we use S =
{
(0, 0), (1, 0), (1, 1), (0, 1)

}
and JS that

consists of four copies of the interval
[
0,
√

2/2
]

to get a regular octagon.

Example 2.6 In Fig. 6 we use

S =
{(

−1, 0
)
,
(
0, 1

)
,
(
0,
√

3
)
,
(
0, 1/

√
3

)}
,

JS =
{
[0, 1], [0, 1], [0, 1],

[
(
√

3 − 3)/2, 1
]}

,

to get an irregular nonagon with all equal sides.

Example 2.7 In Figures 7 through 12 we show six different convex interval
hulls corresponding to the same set S that is used in Example 2.6. We start
with an equilateral triangle in Fig. 7 and proceed by changing one interval at
each step to finish with a regular dodecagon in Fig. 12. We use the following
families of intervals:

Fig. 7 JS =
{
[0, 2], [0, 2], [0, 2], [−1, 0]

}
,

Fig. 8 JS =
{
[0, 1], [0, 2], [0, 2], [−1, 0]

}
,

Fig. 9 JS =
{
[0, 1], [0, 1], [0, 2], [−1, 0]

}
,

Fig. 10 JS =
{
[0, 1], [0, 1], [0, 1], [−1, 0]

}
,

Fig. 11 JS =
{
[0, 1], [0, 1], [0, 1], [1 −

√
3, 0]

}
,

Fig. 12 JS =
{
[0, 1], [0, 1], [0, 1], [1 −

√
3,−2 +

√
3 ]

}
.

Example 2.8 In Fig. 13 we use

S =
{(

−1, 0, 0
)
,
(
1, 0, 0

)
,
(
0,
√

3, 0
)
,
(
0, 1/

√
3, 2

√
2/3

)}

and JS that consists of four copies of
[
0, 2/3

]
to get a truncated tetrahedron.

Notice that the points of S are vertices of a tetrahedron.
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Fig. 7. Step 1 Fig. 8. Step 2 Fig. 9. Step 3

Fig. 10. Step 4 Fig. 11. Step 5 Fig. 12. Regular dodecagon

Example 2.9 In Fig. 14 we use

S =
{(

0, 0, 0
)
,
(
1, 0, 0

)
,
(
0, 1, 0

)
,
(
0, 0, 1

)}

JS =
{[

−2, 1
]
,
[
0, 1

]
,
[
0, 1

]
,
[
0, 1

]}

to get a cube.

Example 2.10 In Fig. 15 we use

S =






(
−1, 0, 0

)
,
(
1, 0, 0

)
,
(
0,
√

3, 0
)
,



0,
1√
3
, 2

√
2

3



 ,

(
0,

1√
3
,

1√
6

)




JS =
{[

0, 1
]
,
[
0, 1

]
,
[
0, 1

]
,
[
0, 1

]
,
[
−2, 0

]}

to get a rhombic dodecahedron. The first four points of S are vertices of a
tetrahedron and the fifth point is its orthocenter.

Example 2.11 In Fig. 16 we use the same S as in Example 2.10 and

JS =
{[

0, 1
]
,
[
0, 1

]
,
[
0, 1

]
,
[
0, 1

]
,
[
−1/2, 0

]}
.
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Fig. 13. Truncated tetrahedron Fig. 14. Cube

Fig. 15. Rhombic dodecahedron Fig. 16. Example 2.11

3 Basic properties of convex interval hulls

In this section most proofs are omitted since they are, though sometimes
lengthy, straightforward consequences of the definitions. The proofs that are
included indicate how to construct the omitted proofs.

Proposition 3.1 Let S = {x1, . . . , xm} be a finite set of points in a linear

space L and let JS = {I1, . . . , Im}, Ij ⊆ R, j = 1, . . . ,m, be a family of

nonempty intervals. Then the set co(S,JS) is convex.

Proposition 3.2 Let S = {x1, . . . , xm} be a finite set of points in a linear
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space L and let JS = {I1, . . . , Im}, Ij ⊆ R, j = 1, . . . ,m, be a family of

nonempty intervals. If J ′
S = {I ′

1, . . . , I
′
m} is a family of nonempty intervals

such that I ′
j ⊆ Ij, j = 1, . . . ,m, then co(S,J ′

S) ⊆ co(S,JS).

Proposition 3.3 Let S = {x1, . . . , xm} be a finite set of points in a linear

space L and let JS = {I1, . . . , Im}, Ij ⊆ R, j = 1, . . . ,m, be a family of

nonempty intervals. Put aj = inf Ij and bj = sup Ij, j = 1, . . . ,m, allowing

for the infinite values. Let α =
∑m

j=1 aj and β =
∑m

j=1 bj. Then co(S,JS) 6= ∅
if and only if the following three conditions are satisfied:

(a) α ≤ 1 ≤ β;

(b) if α = 1, then aj ∈ Ij, j = 1, . . . ,m; and

(c) if β = 1, then bj ∈ Ij, j = 1, . . . ,m.

Proof. Assume co(S,JS) 6= ∅. Then there exist ξj ∈ Ij, j = 1, . . . ,m, such
that

∑m
j=1 ξj = 1. Since aj ≤ ξj ≤ bj, j = 1, . . . ,m, it follows that α ≤ 1 ≤ β.

This proves (a). If α = 1, then aj = ξj, and thus aj ∈ Ij, j = 1, . . . ,m. This
proves (b) and (c) is proved similarly.

To prove the converse assume that (a), (b) and (c) hold. If α = β = 1,
then each of the intervals is in fact a point and co(S,JS) consists of a single
point. Now assume α < β. It follows from Proposition 3.2 that without loss
of generality we can in addition assume that α and β are finite. Set

ξj =
β − 1

β − α
aj +

1 − α

β − α
bj, j = 1, . . . ,m.

It easily follows that ξj ∈ Ij, j = 1, . . . ,m, and
∑m

j=1 ξj = 1. Therefore x =∑m
j=1 ξjxj ∈ co(S,JS). Thus co(S,JS) 6= ∅ and the proposition is proved. 2

Theorem 3.4 Let S = {x1, . . . , xm} be a finite set of distinct points in a

linear space L and let JS = {I1, . . . , Im}, Ij ⊆ R, j = 1, . . . ,m, be a family of

nonempty intervals. The set co(S,JS) is bounded if and only if at least one of

the conditions below is satisfied.

(i) All the intervals in JS are bounded below.

(ii) All the intervals in JS are bounded above.

(iii) At most one interval in JS is unbounded.

If any of the conditions (i)-(iii) is satisfied, then there exists a family of bounded

intervals J ′
S such that co(S,JS) = co(S,J ′

S).

Proof. If all the intervals in JS = {I1, . . . , Im} are bounded, then co(S,JS)
is clearly bounded.

9



Assume (i). Let a ∈ R be such that Ij ⊆ (a, +∞) for all j = 1, . . . ,m. Since the
empty set is bounded, we assume co(S,JS) 6= ∅. By Proposition 3.3, we have
ma < 1. Let x ∈ co(S,JS). Then x =

∑m
j=1 ξj xj for some ξj ∈ Ij, j = 1, . . . ,m,

such that
∑m

j=1 ξj = 1. For arbitrary k ∈ {1, . . . ,m} we have

ξk = 1 −
m∑

j 6=k

ξj < 1 − (m − 1)a = a + 1 − ma.

Therefore a < ξk < a+1−ma. From this if follows that co(S,JS) ⊆ co(S,J ′
S),

where J ′
S is the family of intervals I ′

k = [ak, b
′
k] with b′k = min{a + 1 −

ma, bk}. By Proposition 3.2 the converse inclusion is also true. Consequently
co(S,JS) = co(S,J ′

S). Since each interval in J ′
S is bounded, the set co(S,J ′

S)
is bounded. Thus co(S,JS) is bounded, as well.

Similarly, (ii) implies that co(S,JS) is bounded.

Assume (iii). We can also assume that (i) and (ii) are not true. Then exactly
one of the intervals in JS is unbounded and it equals R. Assume that I1 = R

and Ij = [aj, bj], aj ≤ bj, aj, bj ∈ R, j = 2, . . . ,m. Put α =
∑m

j=2 aj and
β =

∑m
j=2 bj. Clearly α ≤ β. Let v ∈ co(S,JS) be such that

v =
m∑

j=1

ξjxj,
m∑

j=1

ξj = 1, ξj ∈ Ij, j = 1, . . . ,m.

Then
1 − β ≤ ξ1 = 1 − ξ2 − · · · − ξm ≤ 1 − α.

Consequently v ∈ co(S,J ′
S), where J ′

S =
{
[1 − β, 1 − α], I2, . . . , Im

}
. There-

fore co(S,JS) ⊆ co(S,J ′
S). The converse inclusion holds by Proposition 3.2.

Therefore co(S,JS) = co(S,J ′
S). Since each interval in J ′

S is bounded, the set
co(S,J ′

S) is bounded and so is co(S,JS). This completes the proof of ”if” part
of the theorem.

Next we prove the contrapositive of the “only if” part of the theorem. Assume
that (i), (ii) and (iii) are all false. This is equivalent to the fact that the family
JS contains at least two unbounded intervals, say I1 and I2, such that I1 is
not bounded from below and I2 is not bounded from above. Let v ∈ co(S,JS)
be such that

v =
m∑

j=1

cjxj,
m∑

j=1

cj = 1, cj ∈ Ij, j = 1, . . . ,m.

Then
(−∞, c1] ⊆ I1 and [c2, +∞) ⊆ I2.

Consequently, for all t ≥ 0,

(c1 − t)x1 + (c2 + t)x2 + c3x3 + · · · + cmxm = v + t(x2 − x1) ∈ co(S,JS).
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Clearly
‖v + t(x2 − x1)‖ ≥ t‖x2 − x1‖ − ‖v‖, t ≥ 0.

Since by assumption x1 6= x2, the last inequality implies that co(S,JS) is
unbounded. The theorem is proved. 2

Proposition 3.5 Let T : L → K be an affine transformation between linear

spaces L and K. Let S =
{
x1, . . . , xm

}
be a finite subset of L and let JS =

{
I1, . . . , Im

}
be a corresponding set of intervals for which co(S,JS) is bounded.

Let Q = T (S) = {y1, . . . , yk} be the set with k elements, where k ≤ m. Set

JQ =
{
I ′
1, . . . , I

′
k

}
where I ′

j :=
∑{

Ii : Txi = yj

}
.

Then co
(
Q,JQ

)
= T

(
co(S,JS)

)
. Each vertex of T

(
co(S,JS)

)
is an image of

a vertex of co(S,JS).

4 Convex interval hulls and polytopes

Example 2.7 shows that a convex interval hull of four points can have twelve
vertices. In the next theorem we give an upper bound for the number of vertices
of a convex interval hull for a finite set with m points. For a real number t,
⌊t⌋ denotes the greatest integer that does not exceed t.

Theorem 4.1 Let S = {x1, . . . , xm} be a subset of L and let JS be a family

of closed intervals such that co(S,JS) is bounded. Then co(S,JS) is the convex

hull of at most

n

(
m

n

)
points, where n =

m

2

 + 1

and this bound is best possible.

Proof. It follows from Proposition 3.3 that there is no loss of generality if we
assume that all the intervals in JS are bounded. Set Ij = [aj, bj], aj < bj, j =
1, . . . ,m. Denote by B the brick I1×· · ·×Im and put D = B∩Π1 ⊂ R

m. Then
co(S,JS) is the image of D under the linear mapping TS defined in (1.3).

If v is a vertex of D, then v must be on an edge of B. On the other hand, if e
is an edge of B intersecting Π1 but not lying on Π1, then there can be only one
vertex of D on e. Thus, as a simple consequence of [1, Theorem 5] we have that

Π1 can intersect at most n
(

m

n

)
edges of B. From the two observations we infer

that D has at most n
(

m

n

)
vertices. By Proposition 3.5, co(S,JS) = TS(D) has
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fewer vertices than D. Since D has at most n
(

m

n

)
vertices we conclude that

co(S,JS) has at most n
(

m

n

)
vertices.

To show that the bound is best possible we provide an example in which
co(S,JS) has exactly n

(
m

n

)
vertices. To this end denote by e1, . . . , em the

standard unit vectors in R
m and take S = {x1, . . . , xm} and JS =

{
I1, . . . , Im

}
,

where

xj =
2m − 2n + 1

2
ej, and Ij =

[
0,

2

2m − 2n + 1

]
, j = 1, . . . ,m.

Clearly

co
(
S,JS

)
=






m∑

j=1

βj xj : βj ∈ Ij,
m∑

j=1

βj = 1




 .

This, after a straightforward substitution βj

2m − 2n + 1

2
= ζj, gives

co
(
S,JS

)
=






m∑

j=1

ζjej : 0 ≤ ζj ≤ 1 ,
m∑

j=1

ζj = m − n + 1/2






=




(ζ1, . . . , ζm) ∈ C :
m∑

j=1

ζj = m − n + 1/2




 ,

where C is the unit hypercube in R
m. From the above it is immediately seen

that co
(
S,JS

)
is the intersection of C and the hyperplane

H =
{
(ζ1, . . . , ζm) ∈ R

m : ζ1 + · · · + ζm = m − n +
1

2

}
.

One can immediately check that H intersects exactly n
(

m

n

)
edges of C at the

points whose m− n coordinates are equal to 1, n− 1 coordinates are equal to
0 and exactly one coordinate is equal to 1/2. Therefore co(S,JS), being the

intersection of H and C, has exactly n
(

m

n

)
vertices. The proof of the theorem

is complete. 2

Remark 4.2 In the proof of [1, Theorem 5] the hyperplane

Πn = {(ζ1, . . . , ζm) ∈ R
m : ζ1 + · · · + ζm = n}

is mentioned as one which makes the bound n
(

m

n

)
best possible. In fact, this

hyperplane contains
(

m

n

)
vertices of C. Since each vertex belongs to exactly n

edges it could be argued that the hyperplane Πn intersects n
(

m

n

)
edges of C.

Note that our hyperplane H actually intersects n
(

m

n

)
edges of C at distinct

points.
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In the subsequent theorem we continue an examination of combinatorial prop-
erties of co(S,JS). We show that in special cases the number of vertices of
co(S,JS) cannot be too large. We need the following definition.

Definition 4.3 A family of intervals JS = {Ij = [aj, bj] , j = 1, . . . ,m} is
called wide if dk + dj > 1−α for all k 6= j where di = bi − ai and α =

∑m
i=1 ai.

One can easily check that the family JS considered in the example finishing
the proof of Theorem 4.1 is wide only when n = 3 or n = 4 and in both cases
the maximal number of vertices of co(S,JS) guaranteed by Theorem 4.1 is the
same as the one guaranteed by the following theorem.

Theorem 4.4 Let S = {x1, . . . , xm} be a set of distinct points in L. Assume

that JS = {Ij = [aj, bj] : j = 1, . . . ,m} is a wide family of intervals, with

aj < bj < 1 − α + aj and α < 1. Then co(S,JS) is the convex hull of at most

m(m − 1) points and this bound is best possible.

Proof. Similarly as in the proof of Theorem 4.1 we shall show that co(S,JS)
is an image under a linear transformation of a polytope, denoted by W , having
m(m − 1) vertices and lying in the hyperplane

Π1 =
{
(ξ1, . . . , ξm) ∈ R

m : ξ1 + ξ2 + · · · + ξm = 1
}
.

To construct W , we first consider the points

vj = (a1, . . . , 1 − α + aj, . . . , am), j = 1, . . . ,m,

lying on Π1. Clearly, ∆ = conv{v1, . . . , vm} is a fully dimensional simplex in
Π1. Define

W = ∆ ∩ H+

1 ∩ H+

2 ∩ · · · ∩ H+

m

in which

H+

j = {(ξ1, . . . , ξm) ∈ R
m : ξj ≤ bj}, j = 1, . . . ,m,

is the halfspace bounded by the hyperplane

Hj =
{
(ξ1, . . . , ξm) ∈ R

m : ξj = bj

}
.

There are m − 1 edges of ∆ emanating from a vertex vj of ∆. Clearly, each
one of these edges intersects the hyperplane Hj at a point vk

j , k 6= j. It is easy
to check that

vk
j = (a1, . . . , bj, . . . , ck, . . . , am), k 6= j,

where ck = 1−α−dj +ak. Thus, each intersection ∆j = ∆∩Hj, j = 1, . . . ,m,
is a simplex with m − 1 vertices

v1

j , v
2

j , . . . , v
j−1

j , vj+1

j , . . . , vm
j .

13



Now we shall check that every vertex of any simplex ∆j, j = 1, . . . ,m, is a
vertex of W . Indeed, take vk

j = (a1, . . . , bj, . . . , ck, . . . , am), k 6= j. Obviously
vk

j ∈ ∆∩H+
t for t 6= k. To show that also vk

j ∈ ∆∩H+

k we need to check that
ck (the k-th coordinate of vk

j ) is less than bk. This is true since the inequality

ck = 1 − α − dj + ak < bk

is equivalent to

1 − α < bk − ak + dj = dk + dj

and the latter inequality is true because the family JS is wide. In this way we
have shown that every vertex of ∆ gives rise to m− 1 vertices of W . Thus W
is a polytope with m(m − 1) vertices.

Now consider a linear transformation TS : R
m → L defined in (1.3). We want

to show that co(S,JS) = TS(W ). The inclusion TS(W ) ⊆ co(S,JS) simply
follows from the definitions given above.

To show the reverse inclusion, suppose to the contrary that there exists

z ∈ co(S,JS) \ TS(W ).

Of course, z =
∑m

j=1 µjxj for some µ1, . . . , µm such that aj ≤ µj ≤ bj, j =
1, . . . ,m, and

∑m
j=1 µj = 1. Obviously,

(µ1, . . . , µm) ∈ Π1 ∩
m⋂

j=1

H+

j \ W.

From the definition of W it follows now that (µ1, . . . , µm) 6∈ ∆. As ∆ is a fully
dimensional simplex in Π1 we have

(µ1, . . . , µm) ∈ aff{v1, . . . , vm} \ conv{v1, . . . , vm}. (4.1)

From (4.1) we get

(µ1, . . . , µm) =
m∑

j=1

λjvj (4.2)

for some numbers λ1, . . . , λm, satisfying
∑m

j=1 λj = 1, among which at least one
does not belong to the interval [0, 1]. In connection with the last observation
we infer that there exists i0 such that λi0 < 0. It is easy to check that (4.2) is
equivalent to

(µ1, . . . , µm) = (a1 + λ1(1 − α), . . . , am + λm(1 − α)),
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which gives µi0 = ai0 + λi0(1 − α) < ai0 and contradicts the condition ai0 ≤
µi0 ≤ bi0 . Thus co(S,JS) ⊆ TS(W ) and consequently co(S,JS) = TS(W ).
Therefore co(S,JS) cannot have more than m(m − 1) vertices.

Next we show that the number m(m − 1) is attained for wide families. Let
e1, . . . , em be the unit vectors in R

m. Define

S ={e1, . . . , em}, JS =
{
I1, . . . , Im

}
,

where Ij =
[
0,

2

3

]
, j = 1, . . . ,m.

Clearly JS is a wide family and co(S,JS) has exactly m(m − 1) vertices. 2

5 Minimal families of intervals

The convex interval hull of a set S essentially depends on the family of intervals
JS associated with S. In Example 2.1 we saw that the convex interval hull
produced by the family JS of intervals [0, tj] with tj > 1 produces the same
convex interval hull as the family of intervals [0, 1]. This observation indicates
that the latter family is in some sense minimal. In this section we define and
explore the minimality of families of intervals.

Definition 5.1 Let S be a finite set of points in L. A family of intervals
JS =

{
I1, . . . , Im

}
is a minimal interval family for the set S if

J ′
S =

{
I ′
1, . . . , I

′
m

}
, I ′

j ⊆ Ij, j = 1, . . . ,m, and co(S,J ′
S) = co(S,JS)

imply that
I ′
j = Ij, j = 1, . . . ,m.

Definition 5.2 Let J =
{
I1, . . . , Im

}
be a family of bounded intervals such

that Ij = [aj, bj], aj ≤ bj, j = 1, . . . ,m. Set α =
∑m

j=1 aj and β =
∑m

j=1 bj. The
family J is called irreducible if bk−ak ≤ min{1−α, β−1} for all k = 1, . . . ,m.

Let, as before,

J =
{
I1, . . . , Im

}
, Ij = [aj, bj], j = 1, . . . ,m, α =

m∑

j=1

aj, β =
m∑

j=1

bj,

and assume α ≤ 1 ≤ β. In the rest of this section we will use the following
notation. With the family J we associate the following family Ĵ :

Ĵ =
{
Î1, . . . , Îm

}
, Îj = [âj, b̂j], j = 1, . . . ,m, α̂ =

m∑

j=1

âj, β̂ =
m∑

j=1

b̂j,
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where

âj = max
{
aj, bj − (β − 1)

}
, b̂j = min

{
bj, aj + (1 − α)

}
.

Since we assume α ≤ 1 ≤ β, we clearly have

aj ≤ âj ≤ b̂j ≤ bj, j = 1, . . . ,m. (5.1)

The following implication is straightforward: if J is irreducible, then J = Ĵ .
In the next lemma we study the relationship between J and Ĵ further. Among
other statements we prove the converse of the last implication. We set

Π1 =
{(

ζ1, . . . , ζm

)
∈ R

m : ζ1 + · · · + ζm = 1
}
.

Lemma 5.3 Let J =
{
I1, . . . , Im

}
, Ij = [aj, bj], j = 1, . . . ,m, be a family of

bounded intervals. Set α =
∑m

j=1 aj and β =
∑m

j=1 bj and assume α ≤ 1 ≤ β.

The following three statements hold.

(a) Let k ∈ {1, . . . ,m}. The projection of the set

(
I1 × · · · × Im

)
∩ Π1 ⊂ R

m

to the k-th coordinate axes in R
m is the interval Îk =

[
âk, b̂k

]
.

(b)
(
Î1 × · · · × Îm

)
∩ Π1 =

(
I1 × · · · × Im

)
∩ Π1.

(c) The family Ĵ is irreducible.

Proof. The statement (a) claims the equality of two sets. To prove it, let

(
ξ1, . . . , ξm

)
∈

(
I1 × · · · × Im

)
∩ Π1.

Then

ξk = 1 −
m∑

j=1,j 6=k

ξj ≤ 1 −
m∑

j=1,j 6=k

aj = 1 −
(
α − ak

)

and

ξk = 1 −
m∑

j=1,j 6=k

ξj ≥ 1 −
m∑

j=1,j 6=k

bj = 1 −
(
β − bk

)
.

Since ak ≤ ξk ≤ bk, it follows that âk ≤ ξk ≤ b̂k. This proves that the
projection onto k-th coordinate is contained in the interval Îk.

For simplicity of notation, we will prove the converse inclusion for k = 1. Let
ξ1 ∈ Î1. Then

1 − min
{
b1, a1 + 1 − α

}
≤ 1 − ξ1 ≤ 1 − max

{
a1, b1 − β + 1

}
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and consequently
α − a1 ≤ 1 − ξ1 ≤ β − b1. (5.2)

Since the function
(
ζ2, . . . , ζm

)
7→

m∑

j=2

ζj

is a continuous function on I2 × · · · × Im with the minimum α − a1 and the
maximum β − b1, its range is

[
α − a1, β − b1

]
. Now (5.2) implies that there

exists (
ξ2, . . . , ξm

)
∈ I2 × · · · × Im

such that
∑m

j=2 ξj = 1 − ξ1. Thus

(
ξ1, . . . , ξm

)
∈

(
I1 × · · · × Im

)
∩ Π1,

and (a) is proved.

The statement (b) follows from the fact that (a) holds for all k = 1, . . . ,m,
and Îk ⊆ Ik.

To prove (c), we notice that (b) implies that for each k = 1, . . . ,m, the pro-

jection of
(
Î1×· · ·× Îm

)
∩Π1 to the k-th coordinate axes in R

m is the interval

Îk =
[
âk, b̂k

]
. Furthermore, an application of (a) to the family Ĵ yields that

the same projection is the interval

[
max

{
âk, b̂k − (β̂ − 1)

}
, min

{
b̂k, âk + (1 − α̂)

}]
.

Consequently,

âk = max
{
âk, b̂k − (β̂ − 1)

}
, b̂k = min

{
b̂k, âk + (1 − α̂)

}
,

and hence
âk ≥ b̂k − (β̂ − 1), b̂k ≤ âk + (1 − α̂).

This implies that Ĵ is irreducible and the lemma is proved. 2

Proposition 5.4 Let S be a finite subset of L and let JS be a corresponding

family of bounded intervals such that co(S,JS) 6= ∅. Then

co(S, ĴS) = co(S,JS).

Proof. The proposition follows from (b) in Lemma 5.3. 2

Theorem 5.5 Let S be a finite subset of L and let JS be a corresponding

family of bounded intervals such that co(S,JS) 6= ∅. If JS is a minimal family

for S, then JS is irreducible.
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Proof. We prove the contrapositive. Assume that S has m elements and let
JS =

{
I1, . . . , Im

}
. Assume further that JS is not irreducible. Then there

exists k ∈ {1, . . . ,m} such that Îk is a proper subset of Ik. But co(S, ĴS) =
co(S,JS) by Proposition 5.4. Since Îj ⊆ Ij for all j = 1, . . . ,m, JS is not a
minimal family for S. 2

The following example shows that the converse of Theorem 5.5 is not true.

Example 5.6 Consider the set S of 4 points in R
2 from Example 2.7. Let JS

be the family of four copies of the interval [0, 1]. Then co(S,JS) = conv S. The
family JS is clearly irreducible, but it is not a minimal family for S, since the
family J ′

S =
{
[0, 1], [0, 1], [0, 1], [0, t]

}
, for arbitrary t ∈ [0, 1), clearly produces

the same convex interval hull.

In the next theorem we show that for affinely independent sets the converse
of Theorem 5.5 holds true. Recall that a set S = {y1, . . . , ym} of points in L

is affinely independent if and only if the affine mapping

(
ξ1, . . . , ξm

)
7→ ξ1 y1 + · · · + ξm ym (5.3)

is a bijection between Πm
1 and aff S.

Theorem 5.7 Let S be a finite affinely independent subset of L and let JS be

an associated family of bounded intervals. The family JS is a minimal family

for S if and only if it is irreducible.

Proof. Let S be an affinely independent set with m elements and let JS ={
I1, . . . , Im

}
. We prove the contrapositive of the “if” part of the theorem.

Assume that JS is not a minimal family for S. Then there exist a family of
intervals

J ′
S =

{
I ′
1, . . . , I

′
m

}
such that I ′

j ⊆ Ij, j = 1, . . . ,m,

co(S,J ′
S) = co(S,JS), (5.4)

and there exists k ∈ {1, . . . ,m} for which I ′
k is a proper subset of Ik. Setting

I ′
k =

[
a′

k, b
′
k

]
, Ik =

[
ak, bk

]
, the last condition is equivalent to

b′k − a′
k < bk − ak. (5.5)

Since the mapping (5.3) is a bijection, (5.4) is equivalent to

(
I ′
1 × · · · × I ′

m

)
∩ Π1 =

(
I1 × · · · × Im

)
∩ Π1.
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By Lemma 5.3(a), the last equality implies that Ĵ ′
S = ĴS. Therefore, by (5.1)

and (5.5),
b̂k − âk = b̂′k − â′

k ≤ b′k − a′
k < bk − ak.

Hence ĴS 6= JS, and consequently JS is not irreducible. 2

6 The convex interval hull and the homothety

Let δ be a nonzero real number and v ∈ L. The transformation Hδ
v : L → L

defined by
Hδ

v(x) := v + δ x, x ∈ L,

is called a homothety. If δ > 0 the homothety is called positive and if δ < 0 the
homothety is called negative. The number δ is called the ratio of the homothety.
The image of K ⊂ L under Hδ

v is denoted by Hδ
v(K) and it is called a homothet

of K. It is convenient to set H0
v (K) = ∅.

Let S = {x1, . . . , xm}, be a finite set of points in L. We are interested only in
homotheties that map aff S to aff S. Let v ∈ L and δ 6= 0. Clearly Hδ

v(aff S) ⊆
aff S if and only if there exist νj ∈ R, j = 1, . . . ,m, such that

v =
m∑

j=1

νjxj and δ = 1 −
m∑

j=1

νj. (6.1)

Theorem 6.1 Let S = {x1, . . . , xm} be a finite set of points in L and let

JS =
{
I1, . . . , Im

}
be a corresponding family of nonempty intervals. Let v ∈ L

and δ 6= 0 be such that Hδ
v(aff S) ⊆ aff S. Assume that (6.1) holds and set

hj(t) = νj + δ t, t ∈ R. Then

Hδ
v

(
co(S,JS)

)
= co

(
S,J ′

S

)
,

where

J ′
S = {I ′

1, . . . , I
′
m}, I ′

j = hj

(
Ij

)
, j = 1, . . . ,m.

Proof. To prove the inclusion co
(
S,J ′

S

)
⊆ Hδ

v

(
co(S,JS)

)
, let y ∈ co

(
S,J ′

S

)
.

Then there exist ξj ∈ Ij, j = 1, . . . ,m, such that

y =
m∑

j=1

hj

(
ξj

)
xj and

m∑

j=1

hj

(
ξj

)
= 1.

Since, by (6.1),
m∑

j=1

ξj =
1

δ



1 −
m∑

j=1

νj



 = 1,
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with x =
∑m

j=1 ξj xj ∈ co
(
S,JS

)
we have

y =
m∑

j=1

(
νj + δ ξj

)
xj =

m∑

j=1

νj xj + δ
m∑

j=1

ξj xj = Hδ
v(x).

The converse inclusion is proved similarly and the theorem is established. 2

Corollary 6.2 Let S = {x1, . . . , xm} be a finite set of points in L and let

cj ∈ R be such that γ =
∑m

j=1 cj 6= 1. Set hj(t) = cj + (1 − γ)t and

J ′
S =

{
I ′
1, . . . , I

′
m

}
with I ′

j = hj

(
[0, 1]

)
, j = 1, . . . ,m.

Then

co
(
S,J ′

S

)
= H1−γ

v

(
conv S

)
, where v =

m∑

j=1

cjxj.

Remark 6.3 We continue to use the notation of Corollary 6.2. Further, we
assume that cj ≥ 0, j = 1, . . . ,m, and 0 < γ < 1. Simple algebra yields

H1−γ
v (x) = v + (1 − γ)x =

1

γ
v + (1 − γ)

(
x − 1

γ
v
)
, x ∈ aff S.

This expression shows that 1

γ
v is a fixed point of H1−γ

v . Since 0 < 1 − γ < 1

and 1

γ
v ∈ conv S, the homotet H1−γ

v

(
conv S

)
is a contraction of conv S and it

is completely contained in conv S.

The Gauss-Lucas theorem, see [7], states that all the roots of the derivative
of a complex non-constant polynomial p lie in the convex hull of the roots
of p, called the Lucas polygon of p. The reasoning presented in Remark 6.3
was used in [3] to improve the Gauss-Lucas theorem by proving that all the
nontrivial roots of the derivative of p lie in a convex polygon that is a strict
contraction of the Lucas polygon of p and that is completely contained in it.

We conclude this article with a result motivated by Examples 2.2, 2.3, 2.8
and 2.9. It is clear that the convex interval hull co(S,JS) in Figure 2 is the
closure of a set difference of conv S and the union of two smaller homotets of
conv S. Similarly, co(S,JS) in Figure 1 is the closure of a set difference of a
large homotet of conv S and the union of two smaller homotets of conv S. The
reader will easily observe analogous properties of the convex interval hulls in
Figures 3, 13 and 14. In Theorem 6.5 below we give a general result which
explains these observations.

Lemma 6.4 Let J =
{
I1, . . . , Im

}
, Ij = [aj, bj], j = 1, . . . ,m, be an irre-

ducible family of intervals. Set α =
∑m

j=1 aj and β =
∑m

j=1 bj and assume
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α ≤ 1 ≤ β. For k, j ∈ {1, . . . ,m} define

I0

j =
[
aj, aj + (1 − α)

]
,

Ik
j =






[
aj, aj + (1 − α) − (bk − ak)

]
for j 6= k,

(
bj, aj + (1 − α)

]
for j = k.

Set

B =
(
I1 × · · · × Im

) ⋂
Π1, Bu = Π1

⋂ m⋃

k=1

(
Ik
1 × · · · × Ik

m

)
.

Then B ∩ Bu = ∅ and

B ∪ Bu =
(
I0

1 × · · · × I0

m

) ⋂
Π1. (6.2)

Proof. The equality B ∩ Bu = ∅ is obvious. Since J is irreducible we have
bj ≤ aj + 1 − α for all j = 1, . . . ,m. Consequently B ∪ Bu is a subset of(
I0
1 × · · · × I0

m

)
∩ Π1.

To prove the converse inclusion in (6.2), let

(ξ1, . . . , ξm) ∈
(
I0

1 × · · · × I0

m

)
∩ Π1 (6.3)

and assume that

(ξ1, . . . , ξm) /∈
(
I1 × · · · × Im

)
∩ Π1. (6.4)

Then there exists k ∈ {1, . . . ,m} such that

ξk ∈
(
bk, ak + (1 − α)

]
. (6.5)

Next we prove the implication

m∑

j=1

ξj = 1 ⇒ ξj ≤ aj + (1 − α) − (bk − ak)
(
∀ j ∈ {1, . . . ,m} \ {k}

)
. (6.6)

Since the contrapositive is easier to prove, assume

∃ l ∈ {1, . . . ,m} \ {k} such that ξl > al + (1 − α) − (bk − ak). (6.7)

Then, using (6.5) and (6.7), we find

m∑

j=1

ξj > bk +
(
al + (1 − α) − (bk − ak)

)
+

(
α − ak − al

)
= 1,
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and (6.6) is proved. Hence, we have shown that (6.3), (6.4) and (6.5) imply
that

ξj ∈
[
aj, aj+ ≤ (1 − α) − (bk − ak)

] (
∀ j ∈ {1, . . . ,m} \ {k}

)
.

This together with (6.5) implies that (ξ1, . . . , ξm) ∈ Bu and the lemma is
proved. 2

Theorem 6.5 Let S = {x1, ..., xm} be an affinely independent set in L. Let

JS =
{
I1, . . . , Im

}
, Ij = [aj, bj], j = 1, . . . ,m, be an irreducible family of

intervals and assume α =
∑m

j=1 aj < 1. Then co
(
S,JS

)
is the closure of the

set difference of the sets

Hδ
v

(
conv S

)
and

m⋃

j=1

H
δ−dj

v+djxj

(
conv S

)

where v =
∑m

j=1 ajxj, δ = 1 − α, and dj = bj − aj, j = 1, . . . ,m.

Proof. The claim of the theorem is equivalent to the equality

co
(
S,JS

) ⋃ m⋃

j=1

H
δ−dj

v+djxj

(
conv S

)
= Hδ

v

(
conv S

)
(6.8)

together with the condition that the set co
(
S,JS

)
has no common interior

points with the polytopes H
δ−dj

v+djxj

(
conv S

)
, j = 1, . . . ,m. To prove (6.8) and

the stated condition we use Lemma 6.4 and the notation introduced there. For
k = 1, . . . ,m, set

J 0

S =
{
I0

1 , . . . , I
0

m

}
, J k

S =
{
Ik
1 , . . . , Ik

m

}
, J k

S =
{
I

k

1, . . . , I
k

m

}
.

Since S is affinely independent the affine mapping

(
ξ1, . . . , ξm

)
7→ ξ1 y1 + · · · + ξm ym (6.9)

is a bijection between Π1 and aff S. Together with Lemma 6.4 this implies

co
(
S,JS

) ⋃ m⋃

k=1

co
(
S,J k

S

)
= co

(
S,J 0

S

)
(6.10)

and, for k = 1, . . . ,m,

co
(
S,JS

) ⋂
co

(
S,J k

S

)
= ∅.
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Since (6.9) defines a continuous mapping it follows that co
(
S,J k

S

)
is a clo-

sure of co
(
S,J k

S

)
. Therefore, for k = 1, . . . ,m, the polytopes co

(
S,J k

S

)
and

co
(
S,JS

)
have no common interior points.

By Corollary 6.2 we have

co
(
S,J k

S

)
= Hδ−dk

v+dkxk

(
conv S

)
and co

(
S,J 0

S

)
= Hδ

v

(
conv S

)
.

Substituting the last equalities into (6.10) we get (6.8). The proof is com-
plete. 2
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