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Consider boundary eigenvalue problem

`(f) =
n∑

j=0

(−1)j
(
pjf

(j)
)(j)

= λrf on [−1,1]

with boundary conditions of the form

Lb(f) = 0

Mb(f) = λNb(f)

• ` is: regular, symmetric, bounded below,

quasi-differential expression

(from M. A. Naimark’s book)

• boundary conditions are self-adjoint

• pn > 0 and r changes sign (indefinite)
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To which extend the spectral theory of this
indefinite problem parallels the spectral theory
for the case r > 0?

• the problem determines an operator A in
the Krein space

L2,r(−1,1)⊕ Cm
∆

• A is bounded below,
definitizable,
its spectrum is discrete

• There exists a Riesz basis of the

form domain of A consisting of the

root vectors of A.
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What is the form domain F(A) of A?

F(A) is a subspace of L2,r(−1,1)⊕ Cm

It consists of vectors of the form

 f
Nebe(f)

v



f, f ′, . . . , f(n−1) ∈ AC[−1,1]∫ 1

−1
pn|f(n)|2 < +∞

Debe(f) = 0
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These results parallel the corresponding results

for the case r = 1 in

M. G. Krein,

The theory of self-adjoint extensions of semi-

bounded Hermitian transformations and its ap-

plications. II. (Russian)

Mat. Sbornik N.S. 21(63), (1947), 365–404.
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Does there exist a Riesz basis of

L2,r(−1,1)⊕ Cm

which consists of root vectors of A?

This is much harder question!
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A. I. Parfënov in

Sibirsk. Mat. Zh. 44 (2003), 810–819

considered a special case

−f ′′ = λ r f on [−1,1],

with the Dirichlet boundary conditions

f(−1) = f(1) = 0,

where r is an odd function in L1(−1,1) such

that

r > 0 on [0,1].
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Parfënov’s answer:

There exists a Riesz basis of

L2,r(−1,1)

consisting of eigenfunctions of A

if and only if

there exist c ≥ 1 and γ > 0 such that

∫ tx

0
r(ξ)dξ ≤ c tγ

∫ x

0
r(ξ)dξ

for all t, x ∈ (0,1].
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Let u > 1. The function

ru(x) =
1

x(lnu− ln |x|)2
, x ∈ [−1,1] \ {0}

does not satisfy the Parfënov condition, since

∫ x

0
ru(ξ) dξ =

1

lnu− lnx
, x ∈ [0,1]
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The function ru
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No set of eigenfunctions of the problem

−f ′′(x) = λ
1

x(lnu− ln |x|)2
f(x),

f(−1) = f(1) = 0,

forms a Riesz basis of L2,ru(−1,1).
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Does Parfënov’s criteria hold true for all self-

adjoint boundary conditions?



Does Parfënov’s criteria hold true for all self-

adjoint boundary conditions?

No!

There exists an odd function r, r > 0 on [0,1],

satisfying the Parfënov condition and such that

no set of eigenfunctions of the eigenvalue prob-

lem

−f ′′ = λ r f,

f(−1) + f(1) = 0,

f ′(−1) + f ′(1) = 0,

is a Riesz basis of L2,r(−1,1).
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Consider a more general problem

−f ′′ + qf = λ r f on [−1,1],

with

general self-adjoint boundary conditions

and

a function r which is not necessarily odd

(for simplicity I assume that x r(x) > 0)
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Theorem.

Let F(A) denote the form domain of A.

There exists a Riesz basis of

L2,r(−1,1)⊕ Cm
∆

consisting of root vectors of A

if and only if

there exists a bounded, uniformly positive op-

erator W in the Krein space L2,r(−1,1) ⊕ Cm
∆

such that

WF(A) ⊂ F(A).
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Let

a, b ∈ [−1,1], ha, hb ⊂ [−1,1]

half-neighborhoods of a and b

We say that ha and hb are

smoothly r-connected

if there exist

• ε > 0,

• non-constant linear functions

α : [0, ε] → ha and β : [0, ε] → hb,

• ρ ∈ H1[0, ε],

such that

◦ α(0) = a and β(0) = b,

◦ |r(α(t))| ρ(t) = |r(β(t))|,

◦ |α′| 6= |β′|ρ(0)
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Let a ∈ [−1,1] and

let ha ⊂ [−1,1] be a half-neighborhood of a.

If there exists ν > −1 and g1 ∈ C1(ha)

such that

r(x) = |x−a|νg1(x) and g1(x) 6= 0, x ∈ ha,

then ha is smoothly r-connected to itself.



Let a ∈ [−1,1] and

let ha ⊂ [−1,1] be a half-neighborhood of a.

If there exists ν > −1 and g1 ∈ C1(ha)

such that

r(x) = |x−a|νg1(x) and g1(x) 6= 0, x ∈ ha,

then ha is smoothly r-connected to itself.

ha is smoothly r-connected to hb if also

r(x) = |x−b|νg2(x) and g2(x) 6= 0, x ∈ hb,

where g2 ∈ C1(hb)
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Condition at 0.

Denote by 0− a generic left and by 0+ a generic

right half-neighborhood of 0. At least one of

the four pairs of half-neighborhoods

(0−,0−), (0−,0+), (0+,0−), (0+,0+),
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Condition at 0.

Denote by 0− a generic left and by 0+ a generic

right half-neighborhood of 0. At least one of

the four pairs of half-neighborhoods

(0−,0−), (0−,0+), (0+,0−), (0+,0+),

is smoothly r-connected.

“Slightly non-odd functions”

Let g ∈ L1(0,1), g > 0, e.g.,

g(x) = 1
x(lnu−lnx)2

, x ∈ [0,1]

Let 0 < v 6= 1. Put

r(x) =

g(x), x ∈ [0,1]

−vg(−x), x ∈ [−1,0)
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Condition at −1.

A right half-neighborhood of −1 is

smoothly r-connected to itself.

Condition at 1.

A left half-neighborhood of 1 is

smoothly r-connected to itself.

• For λ-independent boundary conditions

either of the above conditions is sufficient

for Riesz-basis property of A.

(“one-sided” condition)

• If one boundary condition is λ-dependent

our method, in some cases, does not allow

a free choice of the condition. For example
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For the problem

−f ′′ = λ r f

f ′(1) = 0

−f ′(−1) = λf(−1)

our method requires Condition at −1 for the

proof of the Riesz-basis property.
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If both boundary conditions are λ-dependent,

then our method, in some cases, requires all

the above conditions and

Mixed Condition at ±1.

There are

two smooth r-connections between

a right half-neighborhood of −1 and

a left half-neighborhood of 1

with the connection parameters α′j, β
′
j and ρj(0),

j = 1,2, such that∣∣∣∣∣ |α′1| |α′2|
|β′1|ρ1(0) |β′2|ρ2(0)

∣∣∣∣∣ 6= 0.

Example
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For the problem
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For the problem

−f ′′ = λ r f

f ′(1) = λf(−1)

−f ′(−1) = λf(1)

our method requires all the stated conditions

to be satisfied to prove the Riesz-basis prop-

erty.

Here ∆ =

[
0 1
1 0

]

F(A) =


 f
f(−1)
f(1)

 ∈
L2,r
⊕

C2
∆

: f ∈ H1[−1,1]


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−f ′′ = λ r f

f ′(1) = λf(−1)

−f ′(−1) = λf(1)

The function

r(x) =

−1, x ∈ [−1,0)

1− x, x ∈ [0,1]

does not satisfy Mixed Condition at ±1.

Our method fails to prove the Riesz-basis prop-

erty for the above problem.
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